Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Oct 27 2024 14:29:44
%S 1,11,25,43,65,91,121,155,193,235,281,331,385,443,505,571,641,715,793,
%T 875,961,1051,1145,1243,1345,1451,1561,1675,1793,1915,2041,2171,2305,
%U 2443,2585,2731,2881,3035,3193,3355,3521,3691,3865,4043,4225,4411,4601,4795,4993
%N a(n) = 2*n^2 + 8*n + 1.
%C The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by _Pierre Gayet_]
%C Numbers of the form 2*n^2 - 7. - _Boris Putievskiy_, Feb 04 2013
%H Pierre Gayet, <a href="/A161532/b161532.txt">Table of n, a(n) for n = 0..10000</a>
%H Pierre Gayet, <a href="/A162316/a162316.gif">Note et Compte rendu</a> (gif version).
%H Pierre Gayet, <a href="/A162316/a162316.pdf">Note et Compte Rendu</a> (pdf version).
%H Pierre Gayet, <a href="/A162316/a162316_1.txt">98 séquences générées ... par la formule générale indiquée</a>.
%H Claude Monet, <a href="https://web.archive.org/web/20060428022333/http://lycees.ac-rouen.fr/bruyeres/jardin/Nymphea.html">Nymphéas</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = a(n-1) + 4*n + 6 (with a(0)=1). - _Vincenzo Librandi_, Nov 30 2010
%F G.f.: (1 + 8*x - 5*x^2)/(1 - x)^3. - _Vincenzo Librandi_, Feb 07 2013
%F From _Elmo R. Oliveira_, Oct 27 2024: (Start)
%F E.g.f.: (1 + 10*x + 2*x^2)*exp(x).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
%t Table[2*n^2+8*n+1, {n,0,100}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 13 2009 *)
%t CoefficientList[Series[(1 + 8*x - 5*x^2)/(1-x)^3, {x, 0, 60}], x] (* _Vincenzo Librandi_, Feb 07 2013 *)
%o (Magma) [ 2*n^2+8*n+1: n in [0..50] ];
%o (PARI) a(n)=2*n^2+8*n+1 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y Cf. A161549, A161587, A161617, A161935, A162316.
%K easy,nonn
%O 0,2
%A _Pierre Gayet_, Jun 13 2009
%E More terms from _Vladimir Joseph Stephan Orlovsky_, Jun 13 2009