

A161402


Numbers n such that the count of primes among the permutations of the digits of n is greater than 2.


3



103, 107, 113, 130, 131, 136, 137, 149, 157, 163, 167, 170, 173, 175, 176, 179, 194, 197, 199, 301, 307, 310, 311, 316, 317, 337, 359, 361, 370, 371, 373, 379, 389, 395, 397, 398, 419, 491, 517, 539, 571, 593, 613, 617, 631, 671, 701, 703, 709, 710, 713
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Leading zeros in the permutations are ignored.


LINKS

Table of n, a(n) for n=1..51.
C. Hilliard, Comments and PARI program.
Wikipedia,Permutation


EXAMPLE

103 has three permutations of its digits 1, 0, 3 that form a prime, namely 103, 031, 013. So the count of primes for 103 is greater than 2 and 103 is in the sequence.


MATHEMATICA

Select[Range[800], Count[FromDigits/@Permutations[ IntegerDigits[#]], _?PrimeQ]> 2&] (* Harvey P. Dale, Nov 24 2010 *)


PROG

(PARI) See Hilliard link.
(MAGMA) [ n: n in [1..720]  #[ s: s in Seqset([ Seqint([m(p[i]):i in [1..#x] ], 10): p in Permutations(Seqset(x)) ])  IsPrime(s) ] gt 2 where m is map< x>y  [<x[i], y[i]>:i in [1..#x] ] > where x is [1..#y] where y is Intseq(n, 10) ]; // Klaus Brockhaus, Jun 14 2009


CROSSREFS

Sequence in context: A235155 A167841 A213311 * A318295 A165294 A046076
Adjacent sequences: A161399 A161400 A161401 * A161403 A161404 A161405


KEYWORD

base,nonn


AUTHOR

Cino Hilliard, Jun 09 2009


EXTENSIONS

Edited by Klaus Brockhaus, Jun 14 2009


STATUS

approved



