login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3/2 + 5*n - 5*(-1)^n/2.
1

%I #21 Nov 04 2024 16:12:50

%S 9,9,19,19,29,29,39,39,49,49,59,59,69,69,79,79,89,89,99,99,109,109,

%T 119,119,129,129,139,139,149,149,159,159,169,169,179,179,189,189,199,

%U 199,209,209,219,219,229,229,239,239,249,249,259,259,269,269,279,279,289

%N a(n) = 3/2 + 5*n - 5*(-1)^n/2.

%H Vincenzo Librandi, <a href="/A161365/b161365.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 10*n - a(n-1) - 2, n > 1.

%F a(n+1) = A017377(floor(n/2)). - _R. J. Mathar_, Jan 05 2011

%F G.f.: x*(9+x^2) / ( (1+x)*(x-1)^2 ). - _R. J. Mathar_, Jan 05 2011

%t LinearRecurrence[{1, 1, -1}, {9, 9, 19}, 60] (* _Vincenzo Librandi_, Mar 02 2012 *)

%t Table[3/2+5n-(5(-1)^n)/2,{n,60}] (* or *) nxt[{n_,a_}]:={n+1,10(n+1)-a-2}; NestList[nxt,{1,9},60][[;;,2]] (* _Harvey P. Dale_, Nov 04 2024 *)

%o (Magma) I:=[9, 9, 19]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // _Vincenzo Librandi_, Mar 02 2012

%o (PARI) for(n=1, 60, print1(3/2+5*n-5*(-1)^n/2", ")); \\ _Vincenzo Librandi_, Mar 02 2012

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Nov 25 2009

%E Definition rewritten by _R. J. Mathar_, Jan 05 2011