login
a(n) = n + sum_of_digits(n) + product_of_digits(n).
5

%I #25 Nov 21 2022 01:26:48

%S 3,6,9,12,15,18,21,24,27,11,14,17,20,23,26,29,32,35,38,22,26,30,34,38,

%T 42,46,50,54,58,33,38,43,48,53,58,63,68,73,78,44,50,56,62,68,74,80,86,

%U 92,98,55,62,69,76,83,90,97,104,111,118,66,74,82,90,98,106,114,122,130

%N a(n) = n + sum_of_digits(n) + product_of_digits(n).

%C a(10) = 10 + (1 + 0) + (1*0) = 11 ; a(19) = 19 + (9 + 1) + (9*1) = 38.

%H Harvey P. Dale, <a href="/A161351/b161351.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = n + A007953(n) + A007954(n). - _Michel Marcus_, Nov 12 2022

%F If n contains a digit 0 (A011540), then a(n) = A062028(n). - _Bernard Schott_, Nov 12 2022

%t Table[n+Total[IntegerDigits[n]]+Times@@IntegerDigits[n],{n,70}] (* _Harvey P. Dale_, Jun 07 2020 *)

%o (PARI) a(n) = my(d=digits(n)); n + vecsum(d) + vecprod(d); \\ _Michel Marcus_, Nov 12 2022

%o (Python)

%o from math import prod

%o def a(n): d = list(map(int, str(n))); return n + sum(d) + prod(d)

%o print([a(n) for n in range(1, 71)]) # _Michael S. Branicky_, Nov 20 2022

%Y Cf. A007953, A007954, A011540, A062028.

%K nonn,base

%O 1,1

%A _Claudio Meller_, Jun 07 2009