login
Triangle read by rows generated from A007249, the convolution square root of A007191
3

%I #3 Mar 31 2012 20:08:03

%S 1,-12,-12,66,144,66,-232,-792,-792,-232,639,2784,4356,2784,639,-1596,

%T -7668,-15312,-15312,-7668,-1596,3774,19152,42174,53824,42174,19152,

%U 3774,-8328,-45288,-105336,-146248,-146248,-105336,-45288,-8328,17283

%N Triangle read by rows generated from A007249, the convolution square root of A007191

%C Row sums = A007191: (1, -24, 276, -2048, 11202,...)

%F Triangle read by rows, self-convolution of A007249. Begin with M = an infinite lower triangular Toeplitz matrix with A007249 as every column. Let Q = a matrix with A007249: (1, -12, 66, -232,..) as the right border and the rest zeros. Triangle A161196 = M * Q.

%e First few rows of the triangle =

%e 1;

%e -12, -12;

%e 66, 144, 66;

%e -232, -792, -792, -232;

%e 639, 2784, 4356, 2784, 639;

%e -1596, -7668, -15312, -15312, -7668, -1596;

%e 3774, 19152, 42174, 53824, 42174, 19152, 3774;

%e -8328, -45288, -105336, -148248, -148248, -105336, -45288, -8328;

%e 17283, 99936, 249084, 370272, 408321, 370272, 249084, 99936, 17283;

%e -34520, -207396, -549648, -875568, -1019844, -1019844, -875568, -549648, -207396, -34520;

%e ...

%Y Cf. A007191, A007249

%K tabl,sign

%O 0,2

%A Gary W. Adamson & _Alexander R. Povolotsky_, Jun 06 2009