%I #3 Mar 31 2012 20:08:03
%S 1,-12,-12,66,144,66,-232,-792,-792,-232,639,2784,4356,2784,639,-1596,
%T -7668,-15312,-15312,-7668,-1596,3774,19152,42174,53824,42174,19152,
%U 3774,-8328,-45288,-105336,-146248,-146248,-105336,-45288,-8328,17283
%N Triangle read by rows generated from A007249, the convolution square root of A007191
%C Row sums = A007191: (1, -24, 276, -2048, 11202,...)
%F Triangle read by rows, self-convolution of A007249. Begin with M = an infinite lower triangular Toeplitz matrix with A007249 as every column. Let Q = a matrix with A007249: (1, -12, 66, -232,..) as the right border and the rest zeros. Triangle A161196 = M * Q.
%e First few rows of the triangle =
%e 1;
%e -12, -12;
%e 66, 144, 66;
%e -232, -792, -792, -232;
%e 639, 2784, 4356, 2784, 639;
%e -1596, -7668, -15312, -15312, -7668, -1596;
%e 3774, 19152, 42174, 53824, 42174, 19152, 3774;
%e -8328, -45288, -105336, -148248, -148248, -105336, -45288, -8328;
%e 17283, 99936, 249084, 370272, 408321, 370272, 249084, 99936, 17283;
%e -34520, -207396, -549648, -875568, -1019844, -1019844, -875568, -549648, -207396, -34520;
%e ...
%Y Cf. A007191, A007249
%K tabl,sign
%O 0,2
%A Gary W. Adamson & _Alexander R. Povolotsky_, Jun 06 2009