%I
%S 0,0,1,1,1,1,1,1,1,1,1,2,1,1,2,3,2,2,3,4,3,3,4,5,4,4,6,6,5,6,7,8,7,7,
%T 8,10,8,8,11,11,10,11,13,13,13,13,15,18,15,16,20,21,19,21,23,24,24,24,
%U 27,30,28,28,33,36,33,35,39,42,41,42,45,49,47,48,55,56,54,58,63,67,65,66,72,78
%N Number of partitions of n into squares where every part appears at least 3 times.
%H R. H. Hardin, <a href="/A161091/b161091.txt">Table of n, a(n) for n = 1..1000</a>
%F G.f.: Product_{j>=1} (1 + x^(3j^2)/(1x^(j^2))).  _Emeric Deutsch_, Jun 24 2009
%e a(23)=4 because we have (4^5)(1^3), (4^4)(1^7), (4^3)(1^11), and (1^23).  _Emeric Deutsch_, Jun 24 2009
%p g := product(1+x^(3*j^2)/(1x^(j^2)), j = 1 .. 20): gser := series(g, x = 0, 90): seq(coeff(gser, x, n), n = 2 .. 84); # _Emeric Deutsch_, Jun 24 2009
%K nonn
%O 1,12
%A _R. H. Hardin_, Jun 02 2009
