login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n where every part appears at least 18 times
1

%I #8 Jan 05 2016 12:08:45

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%T 1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,4,2,4,4,5,4,7,5,7,7,8,7,10,8,

%U 10,10,11,10,15,12,14,15,17,15,19,17,20,20,21,20,25,22,24,25,27,25,32,28,32,32,34,34,39,35,39,40,43,40,46,43,47

%N Number of partitions of n where every part appears at least 18 times

%H R. H. Hardin, <a href="/A160988/b160988.txt">Table of n, a(n) for n=1..1000</a>

%F a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-18*x)) dx = -1.334989118601880353022790449460912585887590533324376464199... . - _Vaclav Kotesovec_, Jan 05 2016

%t nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(18*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Nov 28 2015 *)

%K nonn

%O 1,36

%A _R. H. Hardin_ Jun 01 2009