login
A160983
Number of partitions of n where every part appears at least 13 times
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 3, 5, 4, 5, 6, 6, 6, 8, 7, 8, 9, 11, 10, 12, 12, 14, 14, 15, 15, 18, 17, 18, 19, 21, 23, 23, 24, 26, 27, 29, 29, 31, 32, 33, 35, 36, 37, 42, 41, 46, 46, 50, 51, 58, 58, 63, 63, 71, 71, 81, 83, 89, 92, 101, 104
OFFSET
1,26
LINKS
FORMULA
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-13*x)) dx = -1.268360284879056481996044472640421046229516947156436515845... . - Vaclav Kotesovec, Jan 05 2016
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(13*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)
CROSSREFS
Sequence in context: A161088 A161304 A161279 * A322354 A336312 A161237
KEYWORD
nonn
AUTHOR
R. H. Hardin Jun 01 2009
STATUS
approved