

A160923


Continued fraction for 1/6 + Soldner's constant


0



1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 11, 1, 3, 1, 1, 4, 1, 1, 1, 6, 2, 8, 3, 4, 20, 1, 7, 2, 1, 2, 3, 2, 1, 6, 1, 18, 1, 3, 1, 1, 4, 1, 2, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,15


COMMENTS

1/6 + Soldner's constant differs from the golden ratio by less than 2*10^6. (1/6 + Soldner's constant = 1.61803590...; golden ratio = 1.61803398...). Hence the long initial sequence of 1's.


LINKS



MATHEMATICA

ContinuedFraction[1/6 + FindRoot[LogIntegral[x], {x, 1.5}, WorkingPrecision>1000][[1, 2]], 50]


CROSSREFS



KEYWORD

cofr,nonn


AUTHOR



STATUS

approved



