login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 8.
1

%I #11 Nov 09 2022 07:56:59

%S 255,32385,278715,2072640,4980405,35396805,35000535,132648960,

%T 203183235,632511435,496922835,2265395520,1333405965,4445067945,

%U 5443582665,8489533440,6539772585,25804270845,12663182955,40480731840,38255584755,63109200045,39465022215,144985313280

%N a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 8.

%H Amiram Eldar, <a href="/A160913/b160913.txt">Table of n, a(n) for n = 1..10000</a>

%H Jin Ho Kwak and Jaeun Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

%F a(n) = 255*A160897(n). - _R. J. Mathar_, Mar 15 2016

%F From _Amiram Eldar_, Nov 08 2022: (Start)

%F Sum_{k=1..n} a(k) ~ c * n^7, where c = (255/7) * Product_{p prime} (1 + (p^6-1)/((p-1)*p^7)) = 70.419647503... .

%F Sum_{k>=1} 1/a(k) = (zeta(6)*zeta(7)/255) * Product_{p prime} (1 - 2/p^7 + 1/p^13) = 0.003956793297... . (End)

%t f[p_, e_] := p^(6*e - 6) * (p^7-1) / (p-1); a[1] = 255; a[n_] := 255 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* _Amiram Eldar_, Nov 08 2022 *)

%o (PARI) a(n) = {my(f = factor(n)); 255 * prod(i = 1, #f~, (f[i,1]^7 - 1)*f[i,1]^(6*f[i,2] - 6)/(f[i,1] - 1));} \\ _Amiram Eldar_, Nov 08 2022

%Y Cf. A000010, A013664, A013665, A160897.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Nov 19 2009