Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 May 10 2024 12:29:09
%S 1,1,2,5,11,29,84,267,921,3481,14322,62306,285845,1362662,6681508,
%T 33483830
%N a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once.
%C There is only one arrangement of 1 square tile: a 1 X 1 rectangle. There is also only 1 arrangement of 2 square tiles: a 2 X 1 rectangle. There are 2 arrangements of 3 square tiles: a 3 X 1 rectangle (three 1 X 1 tiles) and a 3 X 2 rectangle (a 2 X 2 tile and two 1 X 1 tiles).
%C Short notation for the 2 possible 3-tile solutions:
%C 3 X 1: 1,1,1
%C 3 X 2: 2,1,1
%C More examples see below.
%C The smallest tile is not always a unit tile, e.g., one of the solutions for 5 tiles is: 6 X 5: 3,3,2,2,2.
%C My definition of a unique solution is the "signature" string in this notation: the rectangle size for nonsquares and the list of coprime tile sizes sorted largest to smallest. Rotations and reflections of a known solution are not new solutions; rearrangements of the same size tiles within the same overall boundary are not new solutions. But reorganizations of the same size tiles in different boundaries are unique solutions, such as 4 X 1: 1,1,1,1 and 2 X 2: 1,1,1,1.
%C From _Rainer Rosenthal_, Dec 23 2022: (Start)
%C The above description can be abbreviated as follows:
%C a(n) is the number of (2+n)-tuples (p X q: t_1,...,t_n) of positive integers, such that:
%C 0. p >= q.
%C 1. gcd(t_1,...,t_n) = 1 and t_i >= t_j for i < j and Sum_{i=1..n} t_i^2 = p * q.
%C 2. Any p X q matrix is the disjoint union of contiguous t_i X t_i minors, i = 1..n. (For contiguous minors resp. submatrices see comments in A350237.)
%C .
%C The rectangle size p X q may have gcd(p,q) > 1, as seen in the examples for 3 X 2 and 6 X 4. Therefore a(n) >= A210517(n) for all n, and a(6) > A210517(6).
%C (End)
%D See A002839 and A217156 for further references and links.
%H Stuart E. Anderson, <a href="http://www.squaring.net/">Perfect Squared Rectangles and Squared Squares</a>
%e From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start)
%e .
%e |A|
%e |A B| |B|
%e |C D| (2 X 2: 1,1,1,1) |C| (4 X 1: 1,1,1,1)
%e |D|
%e .
%e |A A|
%e |A A A| |A A|
%e |A A A| |B B|
%e |A A A| (4 X 3: 3,1,1,1) |B B| (5 X 2: 2,2,1,1)
%e |B C D| |C D|
%e .
%e |A A A|
%e |A A A| <================= 3 X 3 minor A
%e |A A A| 2 X 2 minor B
%e |B B C| (5 X 3: 3,2,1,1) 1 X 1 minor C
%e |B B D| 1 X 1 minor D
%e ________________________________________________________
%e a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4)
%e and as p X q matrices with t_i X t_i minors
%e .
%e Example configurations for a(6) = 29:
%e .
%e |A A A A|
%e |A A A A|
%e |A A A A|
%e |A A B| |A B| |A A A A|
%e |A A C| |C D| |B B C D|
%e |D E F| |E F| |B B E F|
%e ______________________________________________
%e (3 X 3: (3 X 2: (6 X 4:
%e 2,1,1,1,1,1) 1,1,1,1,1,1) 4,2,1,1,1,1)
%e . _________________________
%e |A A A A A A B B B B B B B| | | |
%e |A A A A A A B B B B B B B| | | |
%e |A A A A A A B B B B B B B| | 6 | |
%e |A A A A A A B B B B B B B| | | 7 |
%e |A A A A A A B B B B B B B| | | |
%e |A A A A A A B B B B B B B| |___________| |
%e |C C C C C D B B B B B B B| | |1|_____________|
%e |C C C C C E E E E F F F F| | | | |
%e |C C C C C E E E E F F F F| | 5 | 4 | 4 |
%e |C C C C C E E E E F F F F| | | | |
%e |C C C C C E E E E F F F F| |_________|_______|_______|
%e _____________________________ _____________________________
%e (13 X 11: 7,6,5,4,4,1) (13 X 11: 7,6,5,4,4,1)
%e [rotated by 90 degrees] [alternate visualization]
%e .(End)
%Y Cf. A002839, A005670, A113881, A210517, A217156, A219924, A221843, A221844, A221845, A340726, A342558, A350237.
%K nonn,more
%O 1,3
%A _Kevin Johnston_, Feb 11 2016
%E a(15)-a(16) from _Kevin Johnston_, Feb 11 2016
%E Title changed from _Rainer Rosenthal_, Dec 28 2022