login
Expansion of (1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+x^6)/(1-x)^7.
1

%I #21 Sep 08 2022 08:45:45

%S 1,154,2199,13911,57209,179988,471675,1082509,2246545,4308382,7753615,

%T 13243011,21650409,34104344,52033395,77215257,111829537,158514274,

%U 220426183,301304623,405539289,538241628,705319979,913558437,1170699441

%N Expansion of (1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+x^6)/(1-x)^7.

%C Source: the De Loera et al. article and the Haws website listed in A160747.

%H Vincenzo Librandi, <a href="/A160863/b160863.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = 931*n^6/180 +1261*n^5/60 +1547*n^4/36 +565*n^3/12 +1276*n^2/45 +42*n/5 +1. - _R. J. Mathar_, Sep 17 2011

%p seq(coeff(series((1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # _Muniru A Asiru_, Apr 29 2018

%t LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2199, 13911, 57209, 179988, 471675}, 30] (* _G. C. Greubel_, Apr 28 2018 *)

%o (Magma) [931*n^6/180 +1261*n^5/60 +1547*n^4/36 +565*n^3/12 +1276*n^2/45 +42*n/5+1: n in [0..30]]; // _Vincenzo Librandi_, Sep 20 2011

%o (PARI) x='x+O('x^30); Vec((1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+ x^6)/(1-x)^7) \\ _G. C. Greubel_, Apr 28 2018

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 18 2009