Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:45:45
%S 78,1662,13488,65481,231486,660921,1619353,3537997,7072138,13168476,
%T 23141394,38758149,62332986,96830175,145975971,214379497,307662550,
%U 432598330,597259092,811172721,1085488230,1433150181,1869082029
%N Expansion of (78+1116*x+3492*x^2+3237*x^3+927*x^4+72*x^5+x^6)/(1-x)^7.
%C Source: the De Loera et al. article and the Haws website listed in A160747.
%H Vincenzo Librandi, <a href="/A160839/b160839.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = 8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78. - _R. J. Mathar_, Sep 11 2011
%p seq(coeff(series((78+1116*x+3492*x^2+3237*x^3+927*x^4+72*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # _Muniru A Asiru_, Apr 29 2018
%t Table[8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78, {n, 0, 30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1}, {78, 1662, 13488, 65481, 231486, 660921, 1619353}, 30] (* _G. C. Greubel_, Apr 28 2018 *)
%o (Magma) [8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78: n in [0..30]]; // _Vincenzo Librandi_, Sep 19 2011
%o (PARI) x='x+O('x^30); Vec((78+1116*x+3492*x^2+3237*x^3+927*x^4 +72*x^5 +x^6)/(1-x)^7) \\ _G. C. Greubel_, Apr 28 2018
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, Nov 18 2009