login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of P_6(2n), the Legendre polynomial of order 6 at 2n.
5

%I #20 Jul 23 2019 08:28:55

%S -5,10159,867211,10373071,59271739,227860495,683245579,1727242351,

%T 3854919931,7823790319,14733641995,26117017999,44040338491,

%U 71215667791,111123125899,168143944495,247704167419,356428995631,502307776651,694869638479,945369767995

%N Numerator of P_6(2n), the Legendre polynomial of order 6 at 2n.

%H G. C. Greubel, <a href="/A160741/b160741.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F From _Colin Barker_, Jul 23 2019: (Start)

%F G.f.: -(5 - 10194*x - 795993*x^2 - 4516108*x^3 - 4515933*x^4 - 796098*x^5 - 10159*x^6) / (1 - x)^7.

%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6.

%F a(n) = -5 + 420*n^2 - 5040*n^4 + 14784*n^6.

%F (End)

%p A160741 := proc(n)

%p orthopoly[P](6,2*n) ;

%p numer(%) ;

%p end proc: # _R. J. Mathar_, Oct 24 2011

%t Table[Numerator[LegendreP[6,2n]],{n,0,40}]

%o (PARI) a(n)=numerator(pollegendre(6,n+n)) \\ _Charles R Greathouse IV_, Oct 24 2011

%o (PARI) Vec(-(5 - 10194*x - 795993*x^2 - 4516108*x^3 - 4515933*x^4 - 796098*x^5 - 10159*x^6) / (1 - x)^7 + O(x^30)) \\ _Colin Barker_, Jul 23 2019

%Y Cf. A160739, A144126.

%K sign,frac,easy

%O 0,1

%A _N. J. A. Sloane_, Nov 17 2009