login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160669
Smallest prime divisor of A160668(n).
2
2, 7, 5, 3, 89, 3, 83, 3, 7, 71, 3, 3, 59, 3, 53, 47, 41, 3, 3, 29, 3, 3, 17, 11, 3, 29, 3, 19, 3, 587, 3, 11, 863, 3, 23, 3, 3, 3, 7, 827, 821, 3, 809, 3, 11, 3, 3, 3, 773, 3, 13, 761, 3, 7, 743, 11, 17, 3, 3, 719, 3, 7, 3, 13, 3, 683, 3, 3, 653, 3, 647, 641, 3, 3, 3, 617, 13, 3, 599
OFFSET
1,1
EXAMPLE
a(1)=2 because in A160668 a(1)=8, so the first prime divisor is 2.
PROG
(UBASIC) 10 'recipseq, Enoch Haga, May 22 2009 20 N=3:print N:C=2 30 A=3:S=sqrt(N) 40 B=N/A 50 if A*B=int(N) then 70 60 A=A+2:if A<S then 40 70 if N=prmdiv(N) then print N; :else 130 80 if alen(N)=1 then print 10^1-N; :P=prmdiv(10^1-N):goto 120 90 if alen(N)=2 then print 10^2-N; :P=prmdiv(10^2-N):goto 120 100 if alen(N)=3 then print 10^3-N; :P=prmdiv(10^3-N):goto 120 110 if alen(N)=4 then print 10^4-N; :P=prmdiv(10^4-N) 120 print P; C:C=C+1:stop 130 N=N+2:S=sqrt(N):goto 40
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, May 23 2009
STATUS
approved