login
A160612
Denominator of Laguerre(n, -4).
3
1, 1, 1, 3, 3, 15, 9, 315, 315, 567, 14175, 6237, 467775, 6081075, 773955, 638512875, 9823275, 10854718875, 7514805375, 21837140325, 9280784638125, 38979295480125, 2143861251406875, 3792985290950625, 1183411410776595, 336196423516078125, 9615217712559834375
OFFSET
0,4
LINKS
MAPLE
a:= n-> denom(add(binomial(n, i)*4^i/i!, i=0..n)):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 27 2017
MATHEMATICA
Denominator[Table[LaguerreL[n, -4], {n, 0, 50}]] (* G. C. Greubel, May 12 2018 *)
PROG
(PARI) for(n=0, 30, print1(denominator(sum(k=0, n, binomial(n, k)*(4^k/k!))), ", ")) \\ G. C. Greubel, May 12 2018
(PARI) a(n) = denominator(pollaguerre(n, 0, -4)); \\ Michel Marcus, Feb 05 2021
(Magma) [Denominator((&+[Binomial(n, k)*(4^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 12 2018
CROSSREFS
For numerators see A160611.
Cf. A289147.
Sequence in context: A285562 A285542 A367774 * A275324 A282663 A282124
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 14 2009
STATUS
approved