login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of Laguerre(n, -9).
3

%I #12 Sep 08 2022 08:45:45

%S 1,1,2,1,8,20,16,280,4480,64,44800,49280,1971200,1830400,14350336,

%T 896896000,74547200,243955712000,6823936000,109062553600,

%U 52973240320000,51913775513600,3359126650880000,93815608606720000,2101469632790528000

%N Denominator of Laguerre(n, -9).

%H G. C. Greubel, <a href="/A160602/b160602.txt">Table of n, a(n) for n = 0..492</a>

%t Denominator[Table[LaguerreL[n, -9], {n, 0, 50}]] (* _G. C. Greubel_, May 13 2018 *)

%o (PARI) for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)*(9^k/k!))), ", ")) \\ _G. C. Greubel_, May 13 2018

%o (PARI) a(n) = denominator(pollaguerre(n, 0, -9)); \\ _Michel Marcus_, Feb 05 2021

%o (Magma) [Denominator((&+[Binomial(n,k)*(9^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // _G. C. Greubel_, May 13 2018

%Y For numerators see A160601.

%Y Cf. A289215.

%K nonn,frac

%O 0,3

%A _N. J. A. Sloane_, Nov 14 2009