login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in the expansion of C/B^2, in Watson's notation of page 118.
7

%I #23 Sep 24 2019 02:22:01

%S 1,2,5,10,20,36,65,109,183,295,471,732,1129,1705,2554,3769,5517,7979,

%T 11458,16289,23007,32227,44869,62028,85284,116530,158432,214228,

%U 288348,386224,515156,684109,904963,1192353,1565383,2047642,2669591,3468797,4493351,5802533

%N Coefficients in the expansion of C/B^2, in Watson's notation of page 118.

%H Seiichi Manyama, <a href="/A160525/b160525.txt">Table of n, a(n) for n = 0..1000</a>

%H G. N. Watson, <a href="http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002174499">Ramanujans Vermutung über Zerfällungsanzahlen</a>, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.

%F See Maple code for formula.

%F G.f.: Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^2. - _Seiichi Manyama_, Nov 06 2016

%F a(n) ~ sqrt(13/3) * exp(sqrt(26*n/21)*Pi) / (28*n). - _Vaclav Kotesovec_, Apr 13 2017

%e G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 109*x^7 + ...

%e G.f. = q^5 + 2*q^29 + 5*q^53 + 10*q^77 + 20*q^101 + 36*q^125 + 65*q^149 + 109*q^173 + ...

%p M1:=1200:

%p fm:=mul(1-x^n,n=1..M1):

%p A:=x^(1/7)*subs(x=x^(24/7),fm):

%p B:=x*subs(x=x^24,fm):

%p C:=x^7*subs(x=x^168,fm):

%p t1:=C/B^2;

%p t2:=series(t1,x,M1);

%p t3:=subs(x=y^(1/24),t2/x^5);

%p t4:=series(t3,y,M1/24);

%p t5:=seriestolist(t4); # A160525

%t nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 13 2017 *)

%Y Cf. A160526, A160527, A160528.

%Y Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), A278690 (k=3), A160461 (k=5), this sequence (k=7).

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Nov 13 2009