%I #24 Apr 21 2023 13:01:48
%S 1,-107,10,59845,-7497,210,-6059823,854396,-35574,420,5508149745,
%T -827924889,41094790,-765534,4620,-8781562891079,1373931797082,
%U -75405128227,1738417252,-17219202,60060
%N The Lambda triangle
%C The coefficients of the LS1 matrix are defined by LS1[2*m,n] = int(y^(2*m)/(sinh(y))^(2*n-1),y=0..infinity)/factorial(2*m) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= m.
%C This definition leads to LS1[2*m,n=1] = 2*lambda(2*m+1), for m = 1, 2, .. , and the recurrence relation LS1[2*m,n] = ((2*n-3)/(2*n-2))*(LS1[2*m-2,n-1]/(2*n-3)^2- LS1[2*m,n-1]). As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function.
%C These two formulas enable us to determine the values of the LS1[2*m,n] coefficients, for all integers m and all positive integers n, but not for all n. If we choose, somewhat but not entirely arbitrarily, LS1[m=0,n=1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
%C The coefficients in the columns of the LS1 matrix, for m = 0, 1, 2, .. , and n = 2, 3, 4 .. , can be generated with the GL(z;n) polynomials for which we found the following general expression GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n).
%C The CFN2(z;n) polynomials depend on the central factorial numbers A008956.
%C The LAMBDA(z;n) are the Lambda polynomials which lead to the Lambda triangle.
%C The zero patterns of the Lambda polynomials resemble a UFO. These patterns resemble those of the Eta, Zeta and Beta polynomials, see A160464, A160474 and A160480.
%C The first Maple algorithm generates the coefficients of the Lambda triangle. The second Maple algorithm generates the LS1[2*m,n] coefficients for m= -1, -2, -3, .. .
%C Some of our results are conjectures based on numerical evidence.
%D Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
%H Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, <a href="/A160487/a160487.jpg">jpg</a> and <a href="/A160487/a160487.pdf">pdf</a>, Mar 03 2013.
%F We discovered a remarkable relation between the Lambda triangle coefficients Lambda(n,m) = ZL(n)*(Lambda(n-1,m-1)-(2*n-3)^2*Lambda(n-1,m)) for n = 3, 4, .. and m = 2, 3, .. . See A160488 for LAMBDA(n,m=1) and furthermore LAMBDA(n,n) = 0 for n = 2, 3, .. .
%F We observe that the ZL(n) = A160479(n) sequence also rules the Zeta triangle A160474.
%F The generating functions GL(z;n) of the coefficients in the matrix columns are defined by
%F GL(z;n) = sum(LS1[2*m-2,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .. .
%F This definition, and our choice of LS1[m=0,n=1] = gamma, leads to GL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2) with Psi(z) the digamma-function. Furthermore we discovered that GL(z;n) =GL(z;n-1)*(z^2/((2*n-2)*(2*n-3)) -(2*n-3)/((2*n-2)))+LS1[ -2,n-1]/((2*n-2)*(2*n-3)) for n = 2, 3 , .. . with LS1[ -2,n] = (-1)^(n-1)*4*A058962(n-1)*A002197(n-1)/A002198(n-1) for n = 1, 2, .. , with A058962(n-1) = 2^(2*n-2)*(2*n-1).
%F We found the following general expression for the GL(z;n) polynomials, for n = 2, 3, ..
%F GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n) with
%F h(n) = 6*A160476(n) and p(n) = A160490(n).
%e The first few rows of the triangle LAMBDA(n,m) with n=2,3,.. and m=1,2,.. are
%e [1]
%e [ -107, 10]
%e [59845, -7497, 210]
%e [ -6059823, 854396, -35574, 420]
%e The first few LAMBDA(z;n) polynomials are
%e LAMBDA (z;n=2) = 1
%e LAMBDA (z;n=3) = -107 +10*z^2
%e LAMBDA (z;n=4) = 59845-7497*z^2+210*z^4
%e The first few CFN2(z;n) polynomials are
%e CFN2(z;n=2) = (z^2-1)
%e CFN2(z;n=3) = (z^4-10*z^2+9)
%e CFN2(z;n=4) = (z^6- 35*z^4+259*z^2-225)
%e The first few generating functions GL(z;n) are:
%e GL(z;n=2) = (6*(z^2-1)*GL(z,n=1) + (1)) /12
%e GL(z;n=3) = (60*(z^4-10*z^2+9)*GL(z,n=1)+ (-107+10*z^2)) / 1440
%e GL(z;n=4) = (1260*( z^6- 35*z^4+259*z^2-225)*GL(z,n=1) + (59845-7497*z^2+ 210*z^4))/907200
%p nmax:=7; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1, n), k1=1..n) / (2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1) / (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax do LAMBDA(n, 1) := p(n)*f(n) end do: mmax:=nmax: for n from 2 to nmax do LAMBDA(n, n) := 0 end do: for n from 1 to nmax do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)/(6*(2*n)!) end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: for m from 2 to mmax do for n from m+1 to nmax do LAMBDA(n, m) := ZL(n)*(LAMBDA(n-1, m-1)-(2*n-3)^2*LAMBDA(n-1, m)) end do end do; seq(seq(LAMBDA(n,m), m=1..n-1), n=2..nmax);
%p # End first program.
%p nmax1:=10; m:=1; LS1row:=-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1:=nmax1: for m1 from 1 to mmax1 do LS1[-2*m1, 1] := 2*(1-2^(-(-2*m1+1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do LS1[ -2*m1, n] := sum((-1)^(k1+1)*cfn2(n-1,k1-1)* LS1[2*k1-2*n-2*m1, 1], k1=1..n)/(2*n-2)! od: od: seq(LS1[ -2*m, n], n=1..nmax1-m+1);
%p # End second program.
%Y A160488 equals the first left hand column.
%Y A160476 equals the first right hand column and 6*h(n).
%Y A160489 equals the rows sums.
%Y A160490 equals the p(n) sequence.
%Y A160479 equals the ZL(n) sequence.
%Y A001620 is the Euler-Mascheroni constant gamma.
%Y The LS1[ -2, n] coefficients lead to A002197, A002198 and A058962.
%Y The LS1[ -2*m, 1] coefficients equal (-1)^(m+1)*A036282/A036283.
%Y The CFN2(z, n) and the cfn2(n, k) lead to A008956.
%Y Cf. The Eta, Zeta and Beta triangles A160464, A160474 and A160480.
%Y Cf. A162448 (LG1 matrix)
%K uned,easy,sign,tabl
%O 2,2
%A _Johannes W. Meijer_, May 24 2009, Sep 18 2012