Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 22 2020 22:29:58
%S 1,1,2,1,17,26,2,62,192,60,1,1382,7192,5097,502,2,21844,171511,217186,
%T 55196,2036,2,929569,10262046,20376780,9893440,1089330,16356,4,
%U 6404582,94582204,271154544,215114420,48673180,2567568,16376,1
%N Triangle of polynomial coefficients related to the o.g.f.s of the RES1 polynomials.
%C In A160464 we defined the ES1 matrix by ES1[2*m-1,n=1] and in A094665 it was shown that the n-th term of the coefficients of matrix row ES1[1-2*m,n] for m >= 1 can be generated with the RES1(1-2*m,n) polynomials.
%C We define the o.g.f.s. of these polynomials by GFRES1(z,1-2*m) = sum(RES1(1-2*m,n)*z^(n-1), n=1..infinity) for m >= 1. The general expression of the o.g.f.s. is GFRES1(z,1-2*m) = (-1)*RE(z,1-2*m)/(2*p(m-1)*(z-1)^(m)). The p(m-1), m >= 1, sequence is Gould's sequence A001316.
%C The coefficients of the RE(z,1-2*m) polynomials lead to the triangle given above.
%C The E(z,n) = numer(sum((-1)^(n+1)*k^n*z^(k-1), k=1..infinity)) polynomials with n >= 1, see the Maple algorithm, lead to the Eulerian numbers A008292.
%C Some of our results are conjectures based on numerical evidence.
%H Grzegorz Rzadkowski, M Urlinska, <a href="http://arxiv.org/abs/1612.06635">A Generalization of the Eulerian Numbers</a>, arXiv preprint arXiv:1612.06635, 2016
%e The first few rows are:
%e [1]
%e [1]
%e [2, 1]
%e [17, 26, 2]
%e [62, 192, 60, 1]
%e The first few polynomials RE(z,m) are:
%e RE(z,-1) = 1
%e RE(z,-3) = 1
%e RE(z,-5) = 2+z
%e RE(z,-7) = 17+26*z+2*z^2
%e The first few GFRES1(z,m) are:
%e GFRES1(z,-1) = -(1/1)*(1)/(2*(z-1)^1)
%e GFRES1(z,-3) = -(1/2)*(1)/(2*(z-1)^2)
%e GFRES1(z,-5) = -(1/2)*(2+z)/(2*(z-1)^3)
%e GFRES1(z,-7) = -(1/4)*(17+26*z+2*z^2)/(2*(z-1)^4)
%p nmax := 8; mmax := nmax: T(0, x) := 1: for i from 1 to nmax do dgr := degree(T(i-1, x), x): for na from 0 to dgr do c(na) := coeff(T(i-1, x), x, na) od: T(i-1, x+1) := 0: for nb from 0 to dgr do T(i-1, x+1) := T(i-1, x+1) + c(nb)*(x+1)^nb od: for nc from 0 to dgr do ECGP(i-1, nc+1) := coeff(T(i-1, x), x, nc) od: T(i, x) := expand((2*x+1)*(x+1)*T(i-1, x+1) - 2*x^2*T(i-1, x)) od: dgr := degree (T(nmax, x), x): kmax := nmax: for k from 1 to kmax do p := k: for m from 1 to k do E(m, k) := sum((-1)^(m-q)*(q^k)*binomial(k+1, m-q), q=1..m) od: fx(p) := (-1)^(p+1) * (sum(E(r, k)*z^(k-r), r=1..k))/(z-1)^(p+1): GF(-(2*p+1)) := sort(simplify(((-1)^p* 1/2^(p+1)) * sum(ECGP(k-1, k-s)*fx(k-s), s=0..k-1)), ascending): NUMGF(-(2*p+1)) := -numer(GF(-(2*p+1))): for n from 1 to mmax+1 do A(k+1, n) := coeff(NUMGF(-(2*p+1)), z, n-1) od: od: for m from 2 to mmax do A(1, m) := 0 od: A(1, 1) := 1: FT(1) := 1: for n from 1 to nmax do for m from 1 to n do FT((n)*(n-1)/2+m+1) := A(n+1, m) end do end do: a := n-> FT(n): seq(a(n), n = 1..(nmax+1)*(nmax)/2+1);
%t T[ n_, k_] := Coefficient[a[2 n]/2^IntegerExponent[(2 n)!, 2], x, n + k];
%t a[0] = a[1] = 1; a[ m_] := a[m] = With[{n = m - 1}, x Sum[ a[k] a[n - k] Binomial[n, k], {k, 0, n}]]; Join[{1}, Flatten@Table[T[n, k], {n, 1, 8}, {k, 0, n - 1}]] (* _Michael Somos_, Apr 22 2020 *)
%Y Cf. A160464, A094665 and A083061.
%Y For the Eulerian numbers E(n, k) see A008292.
%Y The p(n) sequence equals Gould's sequence A001316.
%Y The first right hand column of the triangle equals A048896.
%Y The first left hand column equals A160469.
%Y The row sums equal the absolute values of A117972.
%K easy,nonn,tabf
%O 1,3
%A _Johannes W. Meijer_, May 24 2009
%E Edited by _Johannes W. Meijer_, Sep 23 2012