login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).
2

%I #25 Mar 09 2023 09:01:27

%S 0,1,1,1,2,4,6,10,16,28,44,76,120,208,328,568,896,1552,2448,4240,6688,

%T 11584,18272,31648,49920,86464,136384,236224,372608,645376,1017984,

%U 1763200,2781184,4817152,7598336,13160704,20759040,35955712,56714752

%N Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).

%C This sequence is the case k=3 of a family of sequences with recurrences a(2*n+1) = a(2*n) + a(2*n-1), a(2*n+2) = k*a(2*n-1) + a(2*n), a(1)=0, a(2)=1. Values of k, for k >= 0, are given by A057979 (k=0), A158780 (k=1), A002965 (k=2), this sequence (k=3). See "Family of sequences for k" link for other connected sequences.

%C It seems that the ratio of two successive numbers with even, or two successive numbers with odd, indices approaches sqrt(k) for these sequences as n-> infinity.

%C This algorithm can be found in a historical figure named "Villardsche Figur" of the 13th century. There you can see a geometrical interpretation.

%H G. C. Greubel, <a href="/A160444/b160444.txt">Table of n, a(n) for n = 1..1000</a>

%H W. Beinert, <a href="https://www.typolexikon.de/villardscher-teilungskanon/">Villardscher Teilungskanon</a>, Lexikon der Typographie

%H W. Limbrunner, <a href="http://bewusstsein.xobor.de/t229f67-Das-Quadrat-ein-Wunder-der-Geometrie.html">Das Quadrat, ein Wunder der Geometrie</a>. (in German)

%H Willibald Limbrunner, <a href="/A160444/a160444.txt">Family of sequences for k</a>

%H M-T. Zenner, <a href="http://www.emis.de/journals/NNJ/Zenner.html">Villard de Honnecourt and Euclidean Geoometry</a>, Nexus Network Journal 4 (2002) 65-78.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,2).

%F a(n) = 2*a(n-2) + 2*a(n-4).

%F a(2*n+1) = A002605(n).

%F a(2*n) = A026150(n-1).

%t LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* _G. C. Greubel_, Feb 18 2023 *)

%o (Magma) I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // _G. C. Greubel_, Feb 18 2023

%o (SageMath)

%o @CachedFunction

%o def a(n): # a = A160444

%o if (n<5): return ((n+1)//3)

%o else: return 2*(a(n-2) + a(n-4))

%o [a(n) for n in range(1, 41)] # _G. C. Greubel_, Feb 18 2023

%Y Cf. A002532, A002533, A002534, A002535, A002605, A002965, A003665.

%Y Cf. A003683, A015518, A015519, A026150, A046717, A057979, A063727.

%Y Cf. A083098, A083099, A083100, A084057, A158780.

%K nonn,easy

%O 1,5

%A Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009

%E Edited by _R. J. Mathar_, May 14 2009