login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160373
Smallest number m such that exactly n triples (p,q,r) of distinct primes exist with m=p*q+r.
2
1, 11, 13, 23, 17, 37, 53, 62, 81, 99, 93, 105, 118, 122, 148, 152, 165, 166, 208, 224, 214, 225, 232, 250, 284, 285, 308, 314, 332, 346, 326, 382, 388, 400, 448, 476, 458, 494, 454, 518, 520, 478, 525, 530, 578, 598, 640, 602, 632, 716, 634, 740, 710, 692
OFFSET
0,2
COMMENTS
A100951(a(n)) = n and A100951(m) <> n for m < a(n);
a(42) = 525 seems to be the largest odd term.
Note that switching p and q does not make a different triple. - Robert Israel, Mar 09 2018
LINKS
Robert Israel, Table of n, a(n) for n = 0..6567 (n=0..500 from Reinhard Zumkeller)
EXAMPLE
A100951(37) = #{2*3+31,2*7+23,2*13+11,2*17+3,5*7+2} = 5.
MAPLE
N:= 10^4: # to get terms before the first term > N
Primes:= select(isprime, [2, seq(i, i=3..N, 2)]):
V:= Vector(N):
for r in Primes do
for j from 1 while Primes[j]^2 <= N do
p:= Primes[j];
if p = r then next fi;
for k from j+1 while p*Primes[k]+r <= N do
q:= Primes[k];
if q = r then next fi;
V[p*q+r]:= V[p*q+r]+1;
od
od
od:
mv:= max( V):
F:= Vector(mv):
for i from 1 to N do
if V[i] > 0 and F[V[i]] = 0 then F[V[i]]:= i fi
od:
F0:= min(select(t -> F[t] = 0, [$1..max(V)])):
1, seq(F[i], i=1..F0-1); # Robert Israel, Mar 09 2018
N:= 10^4: # to get terms before the first term > N
Primes:= select(isprime, [2, seq(i, i=3..N, 2)]):
V:= Vector(N):
for r in Primes do
for j from 1 while Primes[j]^2 <= N do
p:= Primes[j];
if p = r then next fi;
for k from j+1 to nops(Primes) while p*Primes[k]+r <= N do
q:= Primes[k];
if q = r then next fi;
V[p*q+r]:= V[p*q+r]+1;
od
od
od:
mv:= max( V):
F:= Vector(mv):
for i from 1 to N do
if V[i] > 0 and F[V[i]] = 0 then F[V[i]]:= i fi
od:
F0:= min(select(t -> F[t] = 0, [$1..max(V)])):
if F0 = infinity then F0:= mv fi:
1, seq(F[i], i=1..F0-1); # Robert Israel, Mar 09 2018
CROSSREFS
Sequence in context: A274243 A192931 A002367 * A091998 A208296 A289696
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 11 2009
STATUS
approved