login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = min(A160198(n), A160267(n)).
2

%I #10 Sep 25 2018 20:50:28

%S 2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,

%T 1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,

%U 3,1,2,1,2,1,1,1,1,1,1,1,2,1,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2

%N a(n) = min(A160198(n), A160267(n)).

%C Let f be defined as in A159885. Then a(n) is the least k such that either f^k(2n+1))<2n+1 or A000120(f^k(2n+1)) < A000120(2n+1) or A006694((f^k(2n+1)-1)/2) < A006694(n).

%C In connection with A160198, A160267, A160322 we pose a new (3x+1)-problem: does there exist a finite number of sequences A_i(n), i=1,...,T, such that: 1) A_i(0)=0 and A_i(n)>0 for n>=1; 2) if B_i(n) denotes the least k for which A_i(n)>A_i((f^k(2n+1)-1)/2), then B(n)=min_{i=1,...,T}B_i(n)=1 for every n>=1? Note that this problem is weaker than (3x+1)-Collatz problem. Indeed, if the Collatz conjecture is true, then there exist nonnegative sequences A(n) for which A(0)=0 and A(n)>A((f(2n+1)-1)/2) for every n>=1 (see A160348). - _Vladimir Shevelev_, May 15 2009

%H Antti Karttunen, <a href="/A160322/b160322.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>

%F a(n) = min(A122458(n), A159885(n), A160266(n)). - _Antti Karttunen_, Sep 25 2018

%o (PARI)

%o f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2); \\ Defined for odd n only. Cf. A075677.

%o A006519(n) = (1<<valuation(n, 2));

%o A006694(n) = (sumdiv(2*n+1, d, eulerphi(d)/znorder(Mod(2, d))) - 1); \\ From A006694

%o A160322(n) = { my(v=A006694(n), u = (n+n+1), w = hammingweight(u), k=0); while((u >= (n+n+1))&&(hammingweight(u) >= w)&&(A006694((u-1)/2) >= v), k++; u = f(u)); (k); }; \\ _Antti Karttunen_, Sep 25 2018

%Y Cf. A000120, A006694, A122458, A159885, A159945, A160198, A160266, A160267.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, May 08 2009, May 11 2009

%E a(1) corrected and sequence extended by _Antti Karttunen_, Sep 25 2018