login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of (2*n+1)/(2^(2*n+1)-1).
5

%I #46 Sep 08 2022 08:45:44

%S 1,3,5,7,9,11,13,15,17,19,3,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

%T 51,53,55,57,59,61,9,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,

%U 97,99,101,103,15,107,109,111,113,115,117,119,121,123,125,127

%N Numerator of (2*n+1)/(2^(2*n+1)-1).

%C This first differs from A005408 (the odd numbers 2n+1) at a(10). The sequence of differences is A160145. This explains the similarity of A009843 (expansion of x/cos(x)) and A160143. A156769 describes a similar companion to A036279 (expansion of tan(x)).

%H Altug Alkan, <a href="/A160144/b160144.txt">Table of n, a(n) for n = 0..10000</a>

%p seq(numer((2*n+1)/(4^(2*n+1)-2^(2*n+1))),n=0..32);

%p seq(numer((2*n+1)/(2^(2*n+1)-1)),n=0..50); # _Altug Alkan_, Apr 21 2018

%t Array[Numerator[(2 # + 1)/(2^(2 # + 1) - 1)] &, 64, 0] (* _Michael De Vlieger_, Apr 21 2018 *)

%o (PARI) vector(80,n, n--; numerator((2*n+1)/(4^(2*n+1)-2^(2*n+1)))) \\ _Michel Marcus_, Jan 31 2015

%o (PARI) forstep(k=1, 1e3, 2, print1(numerator(k/(2^k-1)), ", ")); \\ _Altug Alkan_, Apr 21 2018

%o (Magma) [Numerator((2*n+1)/(2^(2*n+1)-1)): n in [0..70]]; // _Vincenzo Librandi_, Apr 25 2018

%Y Cf. A005408, A009843, A036279, A156769, A160143, A160145, A303449 (denominators).

%K easy,frac,nonn

%O 0,2

%A _Peter Luschny_, May 03 2009

%E More terms from _Michel Marcus_, Jan 31 2015

%E Name simplified by _Altug Alkan_, Apr 21 2018

%E Further edited by _N. J. A. Sloane_, Apr 24 2018