login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160102
Multiplicative function, one-to-one and onto the squarefree numbers.
3
1, 2, 3, 5, 7, 6, 11, 10, 13, 14, 17, 15, 19, 22, 21, 23, 29, 26, 31, 35, 33, 34, 37, 30, 41, 38, 39, 55, 43, 42, 47, 46, 51, 58, 77, 65, 53, 62, 57, 70, 59, 66, 61, 85, 91, 74, 67, 69, 71, 82, 87, 95, 73, 78, 119, 110, 93, 86, 79, 105, 83, 94, 143, 115, 133, 102, 89, 145
OFFSET
1,2
COMMENTS
Multiplicative with a(A050376(m)) = Prime(m) = A000040(m). If k = 2^{i_1} + ... + 2^{i_j} is the binary representation of k, a(p^k) = a(p^2^{i_1}) * ... * a(p^2^{i_j}). [edited by Peter Munn, Jan 07 2020]
Equivalently, a(A050376(m)) = A000040(m); a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Dec 30 2019
LINKS
FORMULA
From Peter Munn, Dec 30 2019: (Start)
a(n) = A019565(A052331(n)).
a(A052330(k)) = A019565(k).
(End)
PROG
(PARI) al(n)={local(v, k, fm, m, p);
v=vector(n); v[1]=1; p=1;
for(k=2, n, fm=factor(k);
if(matsize(fm)[1]>1, m=fm[1, 1]^fm[1, 2]; v[k]=v[m]*v[k/m],
m=2^valuation(fm[1, 2], 2);
if(m==fm[1, 2], p=nextprime(p+1); v[k]=p,
m=fm[1, 1]^m; v[k]=v[m]*v[k/m])));
v}
CROSSREFS
Sequences used in definitions of this sequence: A000040, A019565, A050376, A052331, A059897.
Cf. A005117 (range of values), A052330.
Sequence in context: A126890 A122637 A076229 * A338224 A355701 A353955
KEYWORD
mult,nonn
AUTHOR
STATUS
approved