Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 08 2022 08:45:44
%S 3,5,2,8,9,4,1,0,4,1,5,6,2,2,2,8,1,2,9,9,4,8,6,8,2,4,4,7,6,4,2,3,8,1,
%T 0,5,6,3,0,2,0,8,3,3,2,2,0,2,2,3,8,6,8,1,8,2,5,7,5,0,5,6,5,8,3,7,4,3,
%U 4,7,1,9,7,6,9,6,6,2,6,1,7,1,7,8,5,0,7,4,4,0,0,1,8,4,2,7,8,2,8,1,4,6,9,3,0
%N Decimal expansion of (617139 + 371510*sqrt(2))/569^2.
%C Equals Lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A101152.
%C Equals Lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A160090.
%H G. C. Greubel, <a href="/A160092/b160092.txt">Table of n, a(n) for n = 1..10000</a>
%F Equals (1940 + 766*sqrt(2))/(1940 - 766*sqrt(2)).
%F Equals (3 + 2*sqrt(2))*(34 - 3*sqrt(2))^2/(34 + 3*sqrt(2))^2.
%e (617139+371510*sqrt(2))/569^2 = 3.52894104156222812994...
%t RealDigits[(617139 +371510*Sqrt[2])/569^2, 10, 100][[1]] (* _G. C. Greubel_, Apr 21 2018 *)
%o (PARI) (617139 +371510*sqrt(2))/569^2 \\ _G. C. Greubel_, Apr 21 2018
%o (Magma) (617139 +371510*Sqrt(2))/569^2; // _G. C. Greubel_, Apr 21 2018
%Y Cf. A101152, A160090, A002193 (decimal expansion of sqrt(2)), A160091 (decimal expansion of (587+102*sqrt(2))/569).
%K cons,nonn
%O 1,1
%A _Klaus Brockhaus_, May 04 2009