%I #12 Sep 08 2022 08:45:44
%S 1,12,-1106,-43272,3628236,259898832,-19557689016,-2183933508192,
%T 144922576791696,23578406003420352,-1347438116865535776,
%U -310899332445140829312,14796482117559426968256,4841047772087825563299072,-182350261145286781474571136,-86906539145280388735428613632
%N Numerator of Hermite(n, 6/25).
%H G. C. Greubel, <a href="/A160010/b160010.txt">Table of n, a(n) for n = 0..380</a>
%F From _G. C. Greubel_, Jul 17 2018: (Start)
%F a(n) = 25^n * Hermite(n, 6/25).
%F E.g.f.: exp(12*x - 625*x^2).
%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/25)^(n-2*k)/(k!*(n-2*k)!)). (End)
%e Numerators of 1, 12/25, -1106/625, -43272/15625, 3628236/390625
%p seq(coeff(series(factorial(n)*exp(12*x-625*x^2), x,n+1),x,n),n=0..15); # _Muniru A Asiru_, Jul 17 2018
%t Numerator[Table[HermiteH[n, 6/25], {n, 0, 30}]] (* or *) Table[25^n* HermiteH[n, 6/25], {n, 0, 30}] (* _G. C. Greubel_, Jul 17 2018 *)
%o (PARI) a(n)=numerator(polhermite(n, 6/25)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o (PARI) x='x+O('x^30); Vec(serlaplace(exp(12*x - 625*x^2))) \\ _G. C. Greubel_, Jul 17 2018
%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/25)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 17 2018
%o (GAP) List(List([0..15],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(12/25)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # _Muniru A Asiru_, Jul 17 2018
%Y Cf. A009969 (denominators).
%K sign,frac
%O 0,2
%A _N. J. A. Sloane_, Nov 12 2009