login
Powers of 60: a(n) = 60^n.
25

%I #40 Jan 26 2023 10:52:56

%S 1,60,3600,216000,12960000,777600000,46656000000,2799360000000,

%T 167961600000000,10077696000000000,604661760000000000,

%U 36279705600000000000,2176782336000000000000,130606940160000000000000,7836416409600000000000000,470184984576000000000000000

%N Powers of 60: a(n) = 60^n.

%H Vincenzo Librandi, <a href="/A159991/b159991.txt">Table of n, a(n) for n = 0..150</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Sexagesimal">Sexagesimal</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (60).

%F a(n) = A000400(n)*A011557(n) = A000351(n)*A001021(n) = A000302(n)*A001024(n) = A000244(n)*A009964(n). (Corrected by _Robert B Fowler_, Jan 25 2023)

%F From _Muniru A Asiru_, Nov 21 2018: (Start)

%F a(n) = 60^n.

%F a(n) = 60*a(n-1) for n > 0, a(0) = 1.

%F G.f.: 1/(1-60*x).

%F E.g.f: exp(60*x). (End)

%F a(n) = 1/a(-n) for all n in Z. - _Michael Somos_, Jan 01 2019

%e G.f. = 1 + 60*x + 3600*x^2 + 216000*x^3 + 12960000*x^4 + 77600000*x^5 + ... - _Michael Somos_, Jan 01 2019

%p [60^n$n=0..20]; # _Muniru A Asiru_, Nov 21 2018

%t 60^Range[0,15] (* _Harvey P. Dale_, Jun 02 2011 *)

%o (Magma)[60^n: n in [0..20]]; // _Vincenzo Librandi_, May 02 2011

%o (PARI) a(n)=60^n \\ _Charles R Greathouse IV_, May 02 2011

%o (Maxima) A159991(n):=60^n$

%o makelist(A159991(n),n,0,30); /* _Martin Ettl_, Nov 05 2012 */

%o (PARI) a(n)=60^n \\ _Charles R Greathouse IV_, Jun 19 2015

%o (PARI) powers(60,8) \\ _Charles R Greathouse IV_, Jun 19 2015

%o (GAP) List([0..20],n->60^n); # _Muniru A Asiru_, Nov 21 2018

%o (Python) for n in range(0,20): print(60**n, end=', ') # _Stefano Spezia_, Nov 21 2018

%Y Subsequence of A051037.

%Y Cf. A159990, A159993, A159995, A088157, A091649, A125628, A091720, A091721, A091722, A060707, A070197.

%K nonn,easy

%O 0,2

%A _Reinhard Zumkeller_, May 01 2009