login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = denominator of 2*Pi*Sum_{j=0..n-k-1} ((-1)^j*n*(k + j + 2)*(n + k +j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*Gamma(k + j + 3/2)*Gamma(k + j + 5/2)), triangle read by rows (n >= 1, 0 <= k <= n - 1).
1

%I #14 Jan 17 2019 04:06:19

%S 3,15,15,105,21,525,45,35,1575,2205,3465,3465,24255,3465,72765,45045,

%T 45045,1576575,85995,945945,297297,9009,45045,675675,45045,1486485,

%U 495495,19324305,765765,765765,80405325,58963905,11792781,1738165,65702637,78217425

%N T(n,k) = denominator of 2*Pi*Sum_{j=0..n-k-1} ((-1)^j*n*(k + j + 2)*(n + k +j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*Gamma(k + j + 3/2)*Gamma(k + j + 5/2)), triangle read by rows (n >= 1, 0 <= k <= n - 1).

%C Let a_0 and h denote Bohr radius A003671 and Planck constant A003676, respectively. Then (A159982(n,k)/T(n,k))*(n*a_0/h) is the expectation value of any inverse momentum function, where n and k are quantum numbers which are integers obeying n > k >= 0.

%H Robert Delbourgo and David Elliott, <a href="https://doi.org/10.1063/1.3141534">Inverse momentum expectation values for hydrogenic systems</a>, J. Math. Phys. 50, 062107 (2009); <a href="https://arxiv.org/abs/0904.4288">arXiv:0904.4288 [math-ph]</a>, 2009.

%e Triangle begins:

%e n\k | 0 1 2 3 4 5 6

%e -------------------------------------------------------

%e 1 | 3

%e 2 | 15 15

%e 3 | 105 21 525

%e 4 | 45 35 1575 2205

%e 5 | 3465 3465 24255 3465 72765

%e 6 | 45045 45045 1576575 85995 945945 297297

%e 7 | 9009 45045 675675 45045 1486485 495495 19324305

%e ...

%t T[n_, k_] := Denominator[2*Pi*Sum[((-1)^j*n*(k + j + 2)*(n + k +j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*Gamma[k + j + 3/2]*Gamma[k + j + 5/2]), {j, 0, n - k - 1}]]

%t Table[T[n, k], {n, 1, 20}, {k, 0, n - 1}] // Flatten

%t (* _Franck Maminirina Ramaharo_, Jan 16 2019 *)

%o (Maxima) T(n, k) := denom(2*%pi*sum(((-1)^j*n*(k + j + 2)*(n + k + j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*gamma(k + j + 3/2)*gamma(k + j + 5/2)), j, 0, n - k - 1))$

%o create_list(T(n, k), n, 1, 20, k, 0, n - 1);

%o /* _Franck Maminirina Ramaharo_, Jan 16 2019 */

%Y Cf. A003671, A003676.

%Y Cf. A159982 (numerators).

%K frac,nonn,tabl,easy

%O 1,1

%A _Jonathan Vos Post_, Apr 28 2009

%E Edited and extended by _Franck Maminirina Ramaharo_, Jan 16 2019