login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = numerator of 2*Pi*Sum_{j=0..n-k-1} ((-1)^j*n*(k + j + 2)*(n + k +j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*Gamma(k + j + 3/2)*Gamma(k + j + 5/2)), triangle read by rows (n >= 1, 0 <= k <= n - 1).
1

%I #14 Jan 17 2019 04:05:59

%S 32,256,128,2144,256,4096,1024,512,16384,16384,85088,57088,299008,

%T 32768,524288,1172224,809344,21856256,950272,8388608,2097152,245600,

%U 865792,10231808,557056,15204352,4194304,134217728,21696512,15546368,1305935872,795410432,134217728

%N T(n,k) = numerator of 2*Pi*Sum_{j=0..n-k-1} ((-1)^j*n*(k + j + 2)*(n + k +j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*Gamma(k + j + 3/2)*Gamma(k + j + 5/2)), triangle read by rows (n >= 1, 0 <= k <= n - 1).

%C Let a_0 and h denote Bohr radius A003671 and Planck constant A003676, respectively. Then (T(n,k)/A159983(n,k))*(n*a_0/h) is the expectation value of any inverse momentum function, where n and k are quantum numbers which are integers obeying n > k >= 0.

%H Robert Delbourgo and David Elliott, <a href="https://doi.org/10.1063/1.3141534">Inverse momentum expectation values for hydrogenic systems</a>, J. Math. Phys. 50, 062107 (2009); <a href="https://arxiv.org/abs/0904.4288">arXiv:0904.4288 [math-ph]</a>, 2009.

%e Triangle begins:

%e n\k | 0 1 2 3 4 5 6

%e ---------------------------------------------------------------

%e 1 | 32

%e 2 | 256 128

%e 3 | 2144 256 4096

%e 4 | 1024 512 16384 16384

%e 5 | 85088 57088 299008 32768 524288

%e 6 | 1172224 809344 21856256 950272 8388608 2097152

%e 7 | 245600 865792 10231808 557056 15204352 4194304 134217728

%e ...

%t T[n_, k_] := Numerator[2*Pi*Sum[((-1)^j*n*(k + j + 2)*(n + k +j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*Gamma[k + j + 3/2]*Gamma[k + j + 5/2]), {j, 0, n - k - 1}]]

%t Table[T[n, k], {n, 1, 20}, {k, 0, n - 1}] // Flatten

%t (* _Franck Maminirina Ramaharo_, Jan 16 2019 *)

%o (Maxima) T(n, k) := num(2*%pi*sum(((-1)^j*n*(k + j + 2)*(n + k + j)!*(k + j)!^2)/((n - k - j - 1)!*(2*k + j + 1)!*j!*gamma(k + j + 3/2)*gamma(k + j + 5/2)), j, 0, n - k - 1))$

%o create_list(T(n, k), n, 1, 20, k, 0, n - 1);

%o /* _Franck Maminirina Ramaharo_, Jan 16 2019 */

%Y Cf. A003671, A003676.

%Y Cf. A159983 (denominators).

%K frac,nonn,tabl,easy

%O 1,1

%A _Jonathan Vos Post_, Apr 28 2009

%E Edited and extended by _Franck Maminirina Ramaharo_, Jan 16 2019