Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 26 2024 03:55:45
%S 2,2,3,2,2,3,3,2,2,3,5,2,3,3,4,2,2,2,2,4,2,2,2,2,2,5,2,2,6,4,2,2,5,2,
%T 5,3,3,3,7,3,6,2,3,2,2,6,3,2,4,2,3,8,2,9,4,2,6,2,2,2,2,2,2,4,8,4,2,2,
%U 2,3,4,3,9,2,10,2,3,2,4,4,3,4,2,2,11,5,2,5,2,3,4,2,2,3,5,3,8,7,4,15,2,4,7,8
%N Values in A054973 larger than 1.
%C This is a survey of how many solutions the equation sigma(x)=k has for k in A159886, or about the lengths of the plateaus in A007609.
%H Amiram Eldar, <a href="/A159953/b159953.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1095 from Jean-François Alcover)
%H Max Alekseyev, <a href="https://oeis.org/wiki/User:Max_Alekseyev/gpscripts">PARI/GP Scripts for Miscellaneous Math Problems</a> (invphi.gp).
%p read("transforms3") ; a054973 := BFILETOLIST("b054973.txt") ;
%p for i from 1 to 1000 do if op(i,a054973) > 1 then printf("%d,", op(i,a054973)) ; fi; od: # _R. J. Mathar_, May 22 2009
%t b[n_] := Sum[Boole[DivisorSigma[1, k] == n], {k, 1, n}];
%t Select[Array[b, 1000], # > 1&] (* _Jean-François Alcover_, Apr 06 2020 *)
%o (PARI) list(lim) = {my(s); for(k = 1, lim, s = invsigmaNum(k); if(s > 1, print1(s, ", ")));} \\ _Amiram Eldar_, Dec 25 2024, using _Max Alekseyev_'s invphi.gp
%Y Cf. A000203, A007609, A054973, A159886.
%K nonn,changed
%O 1,1
%A _Jaroslav Krizek_, Apr 27 2009
%E Edited and extended by _R. J. Mathar_, May 22 2009