login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159934
Triangle, row sums = d(n) = A000005(n): M * Q; where M = an infinite lower Toeplitz matrix with A159933 in every column. Q = an infinite lower triangular matrix with d(n) shifted: (1, 1, 2, 2, 3, 2, 4, ...) as the main diagonal and the rest zeros.
2
1, 1, 1, -1, 1, 2, 0, -1, 2, 2, -1, 0, -2, 2, 3, 2, -1, 0, -2, 3, 2, -1, 2, -2, 0, -3, 2, 4, -1, -1, 4, -2, 0, -2, 4, 2, 3, -1, -2, 4, -3, 0, -4, 2, 4, -4, 3, -2, -2, 6, -2, 0, -2, 4, 3, 2, -4, 6, -2, -3, 4, -4, 0, -4, 3, 4
OFFSET
1,6
COMMENTS
Triangle = an infinite lower triangular Toeplitz matrix with the INVERTi transform of d(n) in every column; i.e., A159933: (1, 1, -1, 0, -1, 2, -1, ...). Row sums of the resulting eigentriangle of d(n) = d(n).
Sum of n-th row terms = rightmost term of next row.
Right border = d(n) shifted.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
-1, 1, 2;
0, -1, 2, 2;
-1, 0, -2, 2, 3;
2, -1, 0, -2, 3, 2;
-1, 2, -2, 0, -3, 2, 4;
-1, -1, 4, -2, 0, -2, 4, 2;
3, -1, -2, 4, -3, 0, -4, 2, 4;
-4, 3, -2, -2, 6, -2, 0, -2, 4, 3;
2, -4, 6, -2, -3, 4, -4, 0, -4, 3, 4;
2, 2, -8, 6, -3, -2, 8, -2, 0, -3, 4, 2;
-3, 2, 4, -8, 9, -2, -4, 4, -4, 0, -4, 2, 6;
0, -3, 4, 4, -12, 6, -4, -2, 8, -3, 0, -2, 6, 2;
0, 0, -6, 4, 6, -8, 12, -2, -4, 6, -4, 0, -6, 2, 4;
6, 0, 0, -6, 6, 4, -16, 6, -4, -3, 8, -2, 0, -2, 4, 4;
...
Example: row 6 = (2, -1, 0, -2, 3, 2) = termwise products of (2, -1, 0, -1, 1, 1) and (1, 1, 2, 2, 3, 2); with dot product sum = 4 = d(6).
CROSSREFS
Sequence in context: A329903 A316716 A145462 * A229204 A067460 A159855
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Apr 26 2009
STATUS
approved