OFFSET
1,6
COMMENTS
Triangle = an infinite lower triangular Toeplitz matrix with the INVERTi transform of d(n) in every column; i.e., A159933: (1, 1, -1, 0, -1, 2, -1, ...). Row sums of the resulting eigentriangle of d(n) = d(n).
Sum of n-th row terms = rightmost term of next row.
Right border = d(n) shifted.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
-1, 1, 2;
0, -1, 2, 2;
-1, 0, -2, 2, 3;
2, -1, 0, -2, 3, 2;
-1, 2, -2, 0, -3, 2, 4;
-1, -1, 4, -2, 0, -2, 4, 2;
3, -1, -2, 4, -3, 0, -4, 2, 4;
-4, 3, -2, -2, 6, -2, 0, -2, 4, 3;
2, -4, 6, -2, -3, 4, -4, 0, -4, 3, 4;
2, 2, -8, 6, -3, -2, 8, -2, 0, -3, 4, 2;
-3, 2, 4, -8, 9, -2, -4, 4, -4, 0, -4, 2, 6;
0, -3, 4, 4, -12, 6, -4, -2, 8, -3, 0, -2, 6, 2;
0, 0, -6, 4, 6, -8, 12, -2, -4, 6, -4, 0, -6, 2, 4;
6, 0, 0, -6, 6, 4, -16, 6, -4, -3, 8, -2, 0, -2, 4, 4;
...
Example: row 6 = (2, -1, 0, -2, 3, 2) = termwise products of (2, -1, 0, -1, 1, 1) and (1, 1, 2, 2, 3, 2); with dot product sum = 4 = d(6).
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Apr 26 2009
STATUS
approved