Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 27 2018 20:36:30
%S 1,2,-1,3,-3,1,4,-6,5,-1,5,-10,16,-8,1,6,-15,42,-40,12,-1,7,-21,99,
%T -162,88,-17,1,8,-28,219,-585,514,-173,23,-1,9,-36,466,-1974,2641,
%U -1379,311,-30,1,10,-45,968,-6388,12538,-9536,3245,-521,38,-1
%N Triangle read by rows : T(n,0) = n+1, T(n,k)=0 if k<0 or if k>n, T(n,k) = k*T(n-1,k) - T(n-1,k-1).
%H G. C. Greubel, <a href="/A159881/b159881.txt">Rows n=0..100 of triangle, flattened</a>
%F Conjecture row sums: Sum_{k=0..n} |T(n,k)| = A029761(n). - _R. J. Mathar_, May 29 2009
%e Triangle begins :
%e 1;
%e 2, -1;
%e 3, -3, 1;
%e 4, -6, 5, -1;
%e 5, -10, 16, -8, 1;
%e 6, -15, 42, -40, 12, -1;
%e 7, -21, 99, -162, 88, -17, 1;
%e 8, -28, 219, -585, 514, -173, 23, -1;
%e 9, -36, 466, -1974, 2641, -1379, 311, -30, 1;
%e 10, -45, 968, -6388, 12538, -9536, 3245, -521, 38, -1;
%e 11, -55, 1981, -20132, 56540, -60218, 29006, -6892, 825, -47, 1;
%p A159881 := proc(n,k) option remember; if k = 0 then n+1; elif k < 0 or k > n then 0 ; else k*procname(n-1,k)-procname(n-1,k-1) ; fi; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A159881(n,k)) ; od: od: # _R. J. Mathar_, May 29 2009
%t T[n_,0]:= n+1; T[n_,k_]:= T[n,k] = If[k < 0 || k > n, 0, k*T[n-1, k] - T[n-1, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jul 27 2018 *)
%o (PARI) {T(n,k) = if(k==0, n+1, if(k<0 || k>n, 0, k*T(n-1,k) - T(n-1,k-1)))};
%o for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jul 27 2018
%Y Cf. A000027, A000217, A002662, A152948
%K easy,sign,tabl
%O 0,2
%A _Philippe Deléham_, Apr 25 2009