login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of eta(z)^2*eta(4*z)^6/eta(2*z).
1

%I #26 Sep 08 2022 08:45:44

%S 1,-2,0,0,-4,12,0,0,-3,-20,0,0,28,-8,0,0,-8,42,0,0,-72,-20,0,0,29,36,

%T 0,0,84,-72,0,0,24,-40,0,0,-68,36,0,0,-112,24,0,0,84,248,0,0,-39,-158,

%U 0,0,-12,-144,0,0,216,-116,0,0,-108,-16,0,0,80,144,0,0,48,152,0,0,-232,220

%N Expansion of eta(z)^2*eta(4*z)^6/eta(2*z).

%C Expansion of eta(q)^2*eta(q^4)^6/eta(q^2) in powers of q. Unique cusp form of weight 7/2, level 8 and trivial character.

%H G. C. Greubel, <a href="/A159814/b159814.txt">Table of n, a(n) for n = 1..1000</a>

%F Euler transform of period 4 sequence [ -2, -1, -2, -7, ...]. - _Michael Somos_, Jun 07 2012

%F a(4*n) = a(4*n + 3) = 0. - _Michael Somos_, Jun 07 2012

%e q - 2*q^2 - 4*q^5 + 12*q^6 - 3*q^9 - 20*q^10 + 28*q^13 - 8*q^14 - 8*q^17 + ...

%t max = 80; a = Table[{-2, -1, -2, -7}, {max/4}] // Flatten; Series[Product[1/(1 - x^n)^a[[n]], {n, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* _Jean-François Alcover_, Jun 10 2013, after _Michael Somos_ *)

%t eta[q_]:= q^(1/24)*QPochhammer[q]; A159814:= CoefficientList[Series[ eta[q]^2*eta[q^4]^6/eta[q^2], {q, 0, 100}], q]; Table[A159814[[n]], {n, 2, 100}] (* _G. C. Greubel_, May 19 2018 *)

%o (Magma) Basis(CuspidalSubspace(HalfIntegralWeightForms(8,7/2)),100)

%o (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^6 / eta(x^2 + A), n))} /* _Michael Somos_, Jun 07 2012 */

%o (PARI) q='q+O('q^99); Vec(eta(q)^2*eta(q^4)^6/eta(q^2)) \\ _Joerg Arndt_, May 21 2018

%K sign

%O 1,2

%A _Steven Finch_, Apr 22 2009