login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers y such that y^2 is of the form x^2+(x+223)^2 with integer x.
4

%I #15 Apr 19 2023 02:32:27

%S 197,223,257,925,1115,1345,5353,6467,7813,31193,37687,45533,181805,

%T 219655,265385,1059637,1280243,1546777,6176017,7461803,9015277,

%U 35996465,43490575,52544885,209802773,253481647,306254033,1222820173,1477399307

%N Positive numbers y such that y^2 is of the form x^2+(x+223)^2 with integer x.

%C (-28, a(1)) and (A130609(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+223)^2 = y^2.

%C Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

%C Lim_{n -> infinity} a(n)/a(n-1) = (227+30*sqrt(2))/223 for n mod 3 = {0, 2}.

%C Lim_{n -> infinity} a(n)/a(n-1) = (105507+65798*sqrt(2))/223^2 for n mod 3 = 1.

%C For the generic case x^2 + (x+p)^2 = y^2 with p = m^2 - 2 a prime number in A028871, m >= 5, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2*p with a(1)=0, a(2) = 2*m + 2, a(3) = 3*m^2 - 10*m + 8, a(4) = 3*p, a(5) = 3*m^2 + 10*m + 8, a(6) = 20*m^2 - 58*m + 42. Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = m^2 + 2*m + 2, b(3) = 5*m^2 - 14*m + 10, b(4) = 5*p, b(5) = 5m^2 + 14*m + 10, b(6) = 29*m^2 - 82*m + 58. - _Mohamed Bouhamida_, Sep 09 2009

%H G. C. Greubel, <a href="/A159809/b159809.txt">Table of n, a(n) for n = 1..3900</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,-1).

%F a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=197, a(2)=223, a(3)=257, a(4)=925, a(5)=1115, a(6)=1345.

%F G.f.: (1-x)*(197+420*x+677*x^2+420*x^3+197*x^4) / (1-6*x^3+x^6).

%F a(3*k-1) = 223*A001653(k) for k >= 1.

%e (-28, a(1)) = (-28, 197) is a solution: (-28)^2 + (-28+223)^2 = 784 + 38025 = 38809 = 197^2.

%e (A130609(1), a(2)) = (0, 223) is a solution: 0^2 + (0+223)^2 = 49729 = 223^2.

%e (A130609(3), a(4)) = (533, 925) is a solution: 533^2 + (533+223)^2 = 284089 + 571536 = 855625 = 925^2.

%t LinearRecurrence[{0,0,6,0,0,-1}, {197,223,257,925,1115,1345}, 50] (* _G. C. Greubel_, May 21 2018 *)

%o (PARI) {forstep(n=-28, 10000000, [1, 3], if(issquare(2*n^2+446*n+49729, &k), print1(k, ",")))};

%o (Magma) I:=[197,223,257,925,1115,1345]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // _G. C. Greubel_, May 21 2018

%Y Cf. A130609, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A130610 (decimal expansion of (227+30*sqrt(2))/223), A130611 (decimal expansion of (105507+65798*sqrt(2))/223^2).

%K nonn,easy

%O 1,1

%A _Klaus Brockhaus_, Apr 30 2009