login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-leaf binary trees that do not contain (()((((()())())())())) as a subtree.
10

%I #50 Jan 13 2025 20:31:32

%S 1,1,2,5,14,41,124,384,1210,3865,12482,40677,133572,441468,1467296,

%T 4900760,16439370,55357305,187050302,633998079,2154950454,7343407521,

%U 25082709012,85858848820,294480653064,1011871145116,3482837144984,12006861566684,41454180382688

%N Number of n-leaf binary trees that do not contain (()((((()())())())())) as a subtree.

%C By 'binary tree' we mean a rooted, ordered tree in which each vertex has either 0 or 2 children.

%C a(n) is also the number of Dyck words of semilength n-1 with no DUUUU.

%C Also, number of ordered rooted trees with n nodes and all non-root nodes having outdegrees < 4. - _Andrew Howroyd_, Dec 04 2017

%H Andrew Howroyd, <a href="/A159772/b159772.txt">Table of n, a(n) for n = 1..200</a>

%H CombOS - Combinatorial Object Server, <a href="http://combos.org/btree">Generate binary trees</a>

%H Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.

%H Petr Gregor, Torsten Mütze, and Namrata, <a href="https://arxiv.org/abs/2306.08420">Combinatorial generation via permutation languages. VI. Binary trees</a>, arXiv:2306.08420 [cs.DM], 2023.

%H Nickolas Hein and Jia Huang, <a href="http://arxiv.org/abs/1508.01688">Modular Catalan Numbers</a>, arXiv:1508.01688 [math.CO], 2015.

%H Eric S. Rowland, <a href="http://arxiv.org/abs/0809.0488">Pattern avoidance in binary trees</a>, arXiv:0809.0488 [math.CO], 2008-2010.

%F G.f. f(x) satisfies (1 - 4 x) f(x)^3 + (6 x - 1) x f(x)^2 - 4 x^3 f(x) + x^4 = 0.

%F a(n) = sum(k=1..n-1, k*sum(j=0..n-1, binomial(n-1,j)*sum(i=j..n-k+j-1, binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1))))/(n-1), n>1. a(0)=0, a(1)=1. - _Vladimir Kruchinin_, Oct 23 2011

%F Conjecture: 2*(n-1)*(2*n-3)*a(n) +(-43*n^2+172*n-177)*a(n-1) +4*(44*n^2-266*n+411)*a(n-2) +8*(-43*n^2+358*n-741)*a(n-3) +96*(3*n^2-29*n+69)*a(n-4) -128*(n-4)*(n-6)*a(n-5) +512*(n-6)*(n-7)*a(n-6)=0. - _R. J. Mathar_, May 30 2014

%F G.f.: x/(1-x*G(x)) where G(x) is g.f. of A036765. - _Andrew Howroyd_, Dec 04 2017

%F From _Vaclav Kotesovec_, Dec 05 2017: (Start)

%F Recurrence (of order 4): 2*(n-1)*(2*n - 3)*(13*n^2 - 75*n + 104)*a(n) = 3*(117*n^4 - 1039*n^3 + 3315*n^2 - 4513*n + 2216)*a(n-1) - 12*(39*n^4 - 368*n^3 + 1268*n^2 - 1893*n + 1032)*a(n-2) - 16*(n-4)*(13*n^3 - 75*n^2 + 122*n - 54)*a(n-3) - 64*(n-5)*(n-4)*(13*n^2 - 49*n + 42)*a(n-4).

%F a(n) ~ sqrt(r*s*(r - s + 2*s^2) / (2*Pi*(r - 6*r^2 - 3*s + 12*r*s))) / (n^(3/2) * r^n), where r = 0.2769531794372340984240353119411920830379502290822... and s = 0.8081460429543529393193017440354060980373344931954... are real roots of the system of equations r^4 + r*(-1 + 6*r)*s^2 + (1 - 4*r)*s^3 = 4*r^3*s, s*(12*r^2 + 3*s - 2*r*(1 + 6*s)) = 4*r^3. (End)

%F a(n+1) = Sum_{k=0..n} A064580(n,k). - _Georg Fischer_, Jul 20 2023

%t terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];

%t col[4] (* _Jean-François Alcover_, Dec 05 2017, after _Andrew Howroyd_ *)

%o (PARI) Vec(1/(1-serreverse(x*(1-x)/(1-x^4) + O(x*x^25)))) \\ _Andrew Howroyd_, Dec 04 2017

%o (Maxima)

%o a(n):=if n=1 then 1 else sum(k*sum(binomial(n-1,j)*sum(binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1),i,j,n-k+j-1),j,0,n-1),k,1,n-1)/(n-1); /* _Vladimir Kruchinin_, Oct 23 2011 */

%Y Column k=4 of A295679.

%Y Cf. A036765, A064580.

%K nonn,changed

%O 1,3

%A _Eric Rowland_, Apr 23 2009