Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 08 2022 08:45:44
%S 8,17,36,76,160,336,704,1472,3072,6400,13312,27648,57344,118784,
%T 245760,507904,1048576,2162688,4456448,9175040,18874368,38797312,
%U 79691776,163577856,335544320,687865856,1409286144,2885681152,5905580032
%N a(0)=8, a(n) = 2*a(n-1) + 2^(n-1) for n > 0.
%C Diagonal of triangles A062111, A152920.
%H G. C. Greubel, <a href="/A159696/b159696.txt">Table of n, a(n) for n = 0..3300</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4).
%F a(n) = Sum_{k=0..n} (k+8)*binomial(n,k).
%F From _R. J. Mathar_, Apr 20 2009: (Start)
%F a(n) = (16+n)*2^(n-1).
%F a(n) = 4*a(n-1) - 4*a(n-2).
%F G.f.: (8-15*x)/(1-2*x)^2. (End)
%F E.g.f.: (x+8)*exp(2*x). - _G. C. Greubel_, Jun 02 2018
%e a(0)=8, a(1) = 2*8 + 1 = 17, a(2) = 2*17 + 2 = 36, a(3) = 2*36 + 4 = 76, a(4) = 2*76 + 8 = 160, ...
%t LinearRecurrence[{4,-4}, {8,17}, 30] (* or *) Table[(16+n)*2^(n-1), {n,0,30}] (* _G. C. Greubel_, Jun 02 2018 *)
%o (PARI) for(n=0, 30, print1((16+n)*2^(n-1), ", ")) \\ _G. C. Greubel_, Jun 02 2018
%o (Magma) [(16+n)*2^(n-1): n in [0..30]]; // _G. C. Greubel_, Jun 02 2018
%Y Cf. A000079, A001787, A001792, A045623, A045891, A034007, A111297, A159694, A159695.
%K easy,nonn
%O 0,1
%A _Philippe Deléham_, Apr 20 2009
%E More terms from _R. J. Mathar_, Apr 20 2009