Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Sep 26 2022 01:50:57
%S 1,29,811,22679,634201,17734949,495944371,13868707439,387827863921,
%T 10845311482349,303280893641851,8481019710489479,237165271000063561,
%U 6632146568291290229,185462938641156062851,5186330135384078469599,145031780852113041085921
%N Expansion of x*(1 + x)/(1 - 28*x + x^2).
%C Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 13*n(j) + 1 = a(j)*a(j) and 15*n(j) + 1 = b(j)*b(j) with positive integer numbers.
%H Vincenzo Librandi, <a href="/A159669/b159669.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (28,-1).
%F The a(j) recurrence is a(1)=1, a(2)=27, a(t+2) = 28*a(t+1) - a(t) resulting in terms 1, 27, 755, 21113, ... (A159668).
%F The b(j) recurrence is b(1)=1, b(2)=29, b(t+2) = 28*b(t+1) - b(t) resulting in terms 1, 29, 811, 22679, ... (this sequence).
%F The n(j) recurrence is n(0) = n(1) = 0, n(2) = 56, n(t+3) = 783*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 56, 43848, 34289136, ... (A159673).
%F G.f.: x*(1+x)/(1-28*x+x^2). - _Vincenzo Librandi_, Feb 26 2014
%F a(n) = (14+sqrt(195))^(-n)*(-13-sqrt(195)+(-13+sqrt(195))*(14+sqrt(195))^(2*n))/26. - _Colin Barker_, Jul 25 2016
%F a(n) = chebyshev_U(n-1, 14) + chebyshev_U(n-2, 14) = A097311(n) + A097311(n-1). - _G. C. Greubel_, Sep 25 2022
%p for a from 1 by 2 to 100000 do b:=sqrt((15*a*a-2)/13): if (trunc(b)=b) then
%p n:=(a*a-1)/13: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
%p # Second program
%p seq(simplify(ChebyshevU(n, 14) +ChebyshevU(n-1, 14)), n=1..30); # _G. C. Greubel_, Sep 25 2022
%t CoefficientList[Series[(1+x)/(1-28x+x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 26 2014 *)
%t LinearRecurrence[{28,-1},{1,29},20] (* _Harvey P. Dale_, Jul 01 2019 *)
%o (PARI) Vec(x*(x+1)/(x^2-28*x+1) + O(x^100)) \\ _Colin Barker_, Feb 24 2014
%o (PARI) a(n) = round((14+sqrt(195))^(-n)*(-13-sqrt(195)+(-13+sqrt(195))*(14+sqrt(195))^(2*n))/26) \\ _Colin Barker_, Jul 25 2016
%o (Magma)
%o A097311:= func< n | Evaluate(ChebyshevSecond(n-1), 14) >;
%o [A097311(n+1) + A097311(n): n in [1..30]]; // _G. C. Greubel_, Sep 25 2022
%o (SageMath)
%o def A159669(n): return chebyshev_U(n-1, 14) + chebyshev_U(n-2, 14)
%o [A159669(n) for n in range(1,30)] # _G. C. Greubel_, Sep 25 2022
%Y Cf. A097311, A157456, A159668, A159673.
%K nonn,easy
%O 1,2
%A _Paul Weisenhorn_, Apr 19 2009
%E More terms and new name from _Colin Barker_, Feb 24 2014