login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dimension of space of cusp forms of weight 3/2, level 4*n and trivial character.
1

%I #10 Sep 08 2022 08:45:44

%S 0,0,0,0,0,0,1,0,0,1,2,0,2,2,3,1,3,2,4,2,5,4,5,2,2,5,5,4,6,7,7,3,9,7,

%T 9,4,8,8,11,6,9,11,10,8,10,10,11,7,6,8,15,10,12,11,15,10,17,13,14,14,

%U 14,14,18,8,17,19,16,14,21,19,17,12,17,17,20,16,21,23,19,15,15,19,20,22,23

%N Dimension of space of cusp forms of weight 3/2, level 4*n and trivial character.

%C Contribution from _Steven Finch_, Apr 22 2009: (Start)

%C Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).

%C We have

%C m(3/2,N)-s(3/2,N)+m(1/2,N)-s(1/2,N) = m(5/2,N)-s(5/2,N)

%C hence

%C s(3/2,N)+s(1/2,N) = m(1/2,N)+m(3/2,N)-(m(5/2,N)-s(5/2,N))

%C = A159631(N/4)+A159630(N/4)-A159633(N/4)

%C where N is any positive multiple of 4. (End)

%H H. Cohen and J. Oesterle, <a href="http://dx.doi.org/10.1007/BFb0065297">Dimensions des espaces de formes modulaires</a>, Modular Functions of One Variable. VI, Proc. 1976 Bonn conf., Lect. Notes in Math. 627, Springer-Verlag, 1977, pp. 69-78.

%H <a href="http://magma.maths.usyd.edu.au/calc/">MAGMA Calculator</a>.

%o (Magma) [[4*n,Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,3/2)))] : n in [1..90]]

%Y Cf. A159630, A159631, A159633, A159635, A159636 [From _Steven Finch_, Apr 22 2009]

%K nonn

%O 1,11

%A _Steven Finch_, Apr 17 2009