login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159625
Numbers n such that 2^x + 3^y is never prime when max(x,y) = n
3
1679, 1743, 4980, 4982, 5314, 5513, 5695, 6100, 6578, 7251, 7406, 7642, 8218, 8331, 9475, 9578, 9749, 10735
OFFSET
1,1
COMMENTS
Mark Underwood found that for each nonnegative integer n < 1421 there is at least one prime of the form 2^m + 3^n or 2^n + 3^m with m not exceeding n.
This sequence consists of numbers for which there is no such prime.
David Broadhurst estimated that a fraction in excess of 1/800 of the natural numbers belongs to this sequence and found 17 instances with n < 10^4.
For each of the remaining 9983 nonnegative integers n < 10^4, a prime or probable prime of the form 2^x + 3^y was found with max(x,y) = n.
Each probable prime was subjected to a combination of strong Fermat and strong Lucas tests.
LINKS
Broadhurst's heuristic in the PrimeNumbers list. [Broken link]
Maximilian Hasler, Mike Oakes, Mark Underwood, David Broadhurst and others, Primes of the form (x+1)^p-x^p, digest of 22 messages in primenumbers Yahoo group, Apr 5 - May 7, 2009. [Cached copy]
Underwood's posting in the PrimeNumbers list
A list of 9983 primes or probable primes for the excluded cases with n < 10^4
EXAMPLE
a(3) = 4980, since there is no prime of the form 2^m + 3^4980 or 2^4980 + 3^m with m < 4981 and 4980 is the third number n such that 2^x + 3^y is never prime when max(x,y) = n.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
David Broadhurst, Apr 17 2009
EXTENSIONS
a(18) from Giovanni Resta, Apr 09 2014
STATUS
approved