%I #10 Sep 08 2022 08:45:44
%S 1,1,5,2,1,8,2,2,6,7,5,7,5,1,8,5,4,3,2,0,4,0,3,7,0,7,2,6,0,5,1,2,2,5,
%T 9,3,7,5,4,4,6,9,0,6,4,0,7,4,1,4,0,1,8,1,6,3,9,9,6,6,6,3,0,5,3,2,5,7,
%U 0,1,7,5,6,6,2,9,3,5,7,4,9,1,3,4,1,7,4,7,4,9,0,8,8,7,2,0,0,1,5,8,0,6,3,8,2
%N Decimal expansion of (201+20*sqrt(2))/199.
%C lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {1, 2}, b = A129993.
%C lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}, b = A159548.
%H G. C. Greubel, <a href="/A159549/b159549.txt">Table of n, a(n) for n = 1..10000</a>
%F (201+20*sqrt(2))/199 = (20+sqrt(2))/(20-sqrt(2)).
%e (201+20*sqrt(2))/199 = 1.15218226757518543204...
%p with(MmaTranslator[Mma]): Digits:=100:
%p RealDigits(evalf((201+20*sqrt(2))/199))[1]; # _Muniru A Asiru_, Mar 31 2018
%t RealDigits[(201+20*Sqrt[2])/199, 10, 100][[1]] (* _G. C. Greubel_, Mar 30 2018 *)
%o (PARI) (201+20*sqrt(2))/199 \\ _G. C. Greubel_, Mar 30 2018
%o (Magma) (201 + 20*Sqrt(2))/199 // _G. C. Greubel_, Mar 30 2018
%Y Cf. A129993, A159548, A002193 (decimal expansion of sqrt(2)), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).
%K cons,nonn
%O 1,3
%A _Klaus Brockhaus_, Apr 14 2009