%I #11 Sep 08 2022 08:45:43
%S 1,12,-434,-19080,523596,50396112,-908439096,-185674985568,
%T 1447444755600,875930470333632,2981558025372384,-5027099422223924352,
%U -79281938992004709696,33916578324641082789120,1002723429481616382125184,-262420270649216245344056832
%N Numerator of Hermite(n, 6/17).
%H G. C. Greubel, <a href="/A159534/b159534.txt">Table of n, a(n) for n = 0..404</a>
%F From _G. C. Greubel_, Jul 09 2018: (Start)
%F a(n) = 17^n * Hermite(n, 6/17).
%F E.g.f.: exp(12*x-289*x^2).
%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/17)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t Numerator[Table[HermiteH[n,6/17],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *)
%t Table[17^n*HermiteH[n, 6/17], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *)
%o (PARI) a(n)=numerator(polhermite(n,6/17)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018
%Y Cf. A159529, A159530.
%K sign,frac
%O 0,2
%A _N. J. A. Sloane_, Nov 12 2009