login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159507
Numerator of Hermite(n, 1/14).
6
1, 1, -97, -293, 28225, 143081, -13687169, -97818797, 9291579137, 85981515985, -8109191282849, -92371076948149, 8649337125963073, 117277723616986297, -10901977774859968705, -171807014577365168189, 15854100314466788828161, 285247499171775372548513
OFFSET
0,3
FORMULA
a(n) = Sum_{k = 0..n/2} (-49)^k * n! / (k! * (n - 2*k)!). - Michael Somos, Jan 24 2014
0 = a(n) * (-98*a(n+1) + a(n+2) - a(n+3)) + a(n+1) * (-a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 24 2014
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 7^n * Hermite(n,1/14).
E.g.f.: exp(x-49*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/7)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
G.f. = 1 + x - 97*x^2 - 293*x^3 + 28225*x^4 + 143081*x^5 - 13687169*x^6 + ...
MATHEMATICA
Numerator[Table[HermiteH[n, 1/14], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
a[ n_] := If[ n < 0, 0, HermiteH[n, 1/14] 7^n]; (* Michael Somos, Jan 24 2014 *)
a[ n_] := Sum[(-49)^k n! / (k! (n - 2 k)!), {k, 0, n/2}]; (* Michael Somos, Jan 24 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, sum(k=0, n\2, (-49)^k * n! / (k! * (n - 2*k)!)))}; \\ Michael Somos, Jan 24 2014
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
CROSSREFS
Sequence in context: A142008 A008873 A142455 * A141899 A140627 A142631
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved