login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of Bernoulli(n, 1/12).
7

%I #17 Sep 08 2022 08:45:43

%S 1,12,144,1728,103680,248832,20901888,35831808,2149908480,5159780352,

%T 681091006464,743008370688,4056825703956480,106993205379072,

%U 1283918464548864,15407021574586368,15715162006078095360

%N Denominator of Bernoulli(n, 1/12).

%H Harvey P. Dale, <a href="/A159490/b159490.txt">Table of n, a(n) for n = 0..900</a>

%t Denominator[BernoulliB[Range[0,30],1/12]] (* _Harvey P. Dale_, Oct 09 2011 *)

%o (PARI) for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)* bernfrac(n-k)*(1/12)^k)), ", ")) \\ _G. C. Greubel_, Jul 09 2018

%o (PARI) a(n) = denominator(subst(bernpol(n, x), x, 1/12)); \\ _Michel Marcus_, Jul 10 2018

%o (Magma) [Denominator((&+[Binomial(n,k)*Bernoulli(n-k)*(1/12)^k: k in [0..n]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018

%Y For numerators see A159489.

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, Nov 08 2009