login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159395
Number of n X n arrays of squares of integers summing to 15.
1
12, 3480, 695776, 146278160, 24075289500, 2757589446360, 199926892967040, 9002136703356360, 266012140249399740, 5540786512741512384, 86568566944442320608, 1065719011381263788328, 10740917528961226530924
OFFSET
2,1
COMMENTS
There are either one 9, one 4 and two 1's, or one 9 and six 1's, or three 4's and three 1's, or two 4's and seven 1's, or one 4 and eleven 1's, or fifteen 1's, and in each case the rest are 0's. - Robert Israel, Jun 04 2020
LINKS
Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
FORMULA
Empirical G.f.: -4*x^2*(1+x)*(3 + 774*x + 147595*x^2 + 31420746*x^3 +4930813594*x^4 + 514132877008*x^5 + 30735972011770*x^6 +965001688149346*x^7 + 16097428576776773*x^8 +150031357184487178*x^9 + 818650552471356653*x^10 +2702659491995569492*x^11 + 5503456361992829612*x^12 +6971617718513038912*x^13 + 5503456361992829612*x^14 +2702659491995569492*x^15 + 818650552471356653*x^16 +150031357184487178*x^17 + 16097428576776773*x^18 +965001688149346*x^19 + 30735972011770*x^20 + 514132877008*x^21 +4930813594*x^22 + 31420746*x^23 + 147595*x^24 + 774*x^25 + 3*x^26)/(-1+x)^31. - Vaclav Kotesovec, Nov 30 2012
From Robert Israel, Jun 04 2020: (Start) Empirical g.f. confirmed.
a(n) = (n^30 - 105*n^28 + 5005*n^26 - 110565*n^24 + 587587*n^22 + 25750725*n^20 - 572127985*n^18 + 4357458105*n^16 + 651498848*n^14 - 209929880160*n^12 + 1338174481280*n^10 - 3184977017040*n^8 + 1625807456064*n^6 + 3390523799040*n^4 - 2964061900800*n^2)/15!. (End)
MAPLE
seq((n^30 - 105*n^28 + 5005*n^26 - 110565*n^24 + 587587*n^22 + 25750725*n^20 - 572127985*n^18 + 4357458105*n^16 + 651498848*n^14 - 209929880160*n^12 + 1338174481280*n^10 - 3184977017040*n^8 + 1625807456064*n^6 + 3390523799040*n^4 - 2964061900800*n^2)/15!, n=2..30); # Robert Israel, Jun 04 2020
CROSSREFS
Sequence in context: A077749 A077297 A012609 * A272093 A099186 A307944
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Apr 11 2009
STATUS
approved