login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159380
Number of n X n arrays of squares of integers with every (n-1) X (n-1) subblock summing to 10.
2
46, 8780, 2360696, 350007360, 30587815086, 1354835948116, 33260056683980, 522276436822144, 5839731483074618, 50097272262566248, 347612897548180792, 2027444729799605536, 10230660755186873586, 45666006349045615904
OFFSET
3,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
FORMULA
a(n) = (936533802*n^20 - 36001207145*n^19 + 622792384955*n^18 - 6253364338440*n^17 + 37851028746252*n^16 - 106861751384070*n^15 - 361406279253990*n^14 + 6020646293099020*n^13 - 37914859899827818*n^12 + 159323939501288055*n^11 - 496896470881581885*n^10 + 1194661749864039780*n^9 - 2250923413670955828*n^8 + 3355424999095241680*n^7 - 4007305827926228080*n^6 + 3935810505847400640*n^5 - 3314069608404201408*n^4 + 2445300834249876480*n^3 - 1484282086246656000*n^2 + 622984191911424000*n - 128034305925120000)/1646023680000. - Robert Israel, Dec 20 2023
MAPLE
G:= proc(s, m)
option remember; local t;
if s >= 9 then t:= expand(m!/((s-9)!*(m-(s-9)-1)!)) else t:= 0 fi; # 9, 1* 0*
if s >= 8 then t:= t + expand(m!/(2*(s-8)!*(m-(s-8)-2)!)) fi; # 4, 4, 1*, 0&*
if s >= 4 then t:= t + expand(m!/(s-4)!/(m-(s-4)-1)!) fi; # 4, 1*, 0*
t + expand(m!/(s!*(m-s)!)); # 1*, 0*
end proc:
t:= 0:
for a in [0, 1, 4, 9] do
for c in [0, 1, 4, 9] do
for b from 0 to 10 - max(a, c) do
for d from 0 to 10 - a - b do
e:= 10 - a - b - d;
f:= 10 - b - c - e;
if f < 0 then next fi;
for g in [0, 1, 4, 9] do
h:= 10 - d - e - g;
if h < 0 then next fi;
i:= 10 - e - f - h;
if not member(i, [0, 1, 4, 9]) then next fi;
t:= t + G(b, n-2) * G(d, n-2) * G(f, n-2) * G(h, n-2) * G(e, (n-2)^2)
od od od od od:
Q:= normal(t):
seq(Q, n=3 .. 25); # Robert Israel, Dec 20 2023
CROSSREFS
Sequence in context: A223891 A243648 A302114 * A134793 A177639 A222097
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 11 2009
STATUS
approved