login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159347
Transform of the finite sequence (1, 0, -1) by the T_{0,0} transformation.
5
1, 1, 1, 4, 10, 23, 53, 123, 286, 665, 1546, 3594, 8355, 19423, 45153, 104968, 244021, 567280, 1318766, 3065759, 7127025, 16568323, 38516678, 89540413, 208156206, 483904470, 1124941411, 2615171499, 6079536145, 14133206848, 32855719753
OFFSET
0,4
COMMENTS
Without the first two 1's: A137531.
FORMULA
O.g.f.: f(z) = ((1-z)^2/(1 - 3*z + 2*z^2 - z^3))*(1-z^2).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 5, with a(0)=1, a(1)=1, a(2)=1, a(3)=4, a(4)=10.
a(n) = A137531(n-2).
MAPLE
a(0):=1: a(1):=1:a(2):=1: a(3):=4:a(4):=10:for n from 2 to 31 do a(n+3):=3*a(n+2)-2*a(n+1)+a(n):od:seq(a(i), i=0..31);
MATHEMATICA
Join[{1, 1}, LinearRecurrence[{3, -2, 1}, {1, 4, 10}, 50]] (* G. C. Greubel, Jun 16 2018 *)
PROG
(PARI) m=50; v=concat([1, 4, 10], vector(m-3)); for(n=4, m, v[n] = 3*v[n-1] -2*v[n-2] +v[n-3] ); concat([1, 1], v) \\ G. C. Greubel, Jun 16 2018
(Magma) I:=[1, 4, 10]; [1, 1] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Jun 16 2018
CROSSREFS
Cf. A137531.
Sequence in context: A295059 A118645 A200759 * A137531 A102549 A277789
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 11 2009
STATUS
approved