login
A159330
Transform of the finite sequence (1, 0, -1, 0, 1) by the T_{1,1} transformation (see link).
3
2, 4, 9, 23, 55, 126, 292, 679, 1579, 3671, 8534, 19839, 46120, 107216, 249247, 579429, 1347009, 3131416, 7279659, 16923154, 39341560, 91458031, 212614127, 494267879, 1149033414, 2671178611, 6209736884, 14435886844, 33559365375, 78016059321, 181365334057
OFFSET
0,1
FORMULA
O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4) + z/(1-3*z+2*z^2-z^3) + (1-z+z^2)/(1-3*z+2*z^2-z^3).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 7, with a(0)=2, a(1)=4, a(2)=9, a(3)=23, a(4)=55, a(5)=126, a(6)=292.
MATHEMATICA
Join[{2, 4, 9, 23}, LinearRecurrence[{3, -2, 1}, {55, 126, 292}, 47]] (* G. C. Greubel, Jun 26 2018 *)
PROG
(PARI) my(z='z+O('z^31)); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4) + z/(1-3*z+2*z^2-z^3) + (1-z+z^2)/(1-3*z+2*z^2-z^3)) \\ G. C. Greubel, Jun 26 2018
(Magma) I:=[55, 126, 292]; [2, 4, 9, 23] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 26 2018
CROSSREFS
Sequence in context: A278691 A159329 A159334 * A159331 A135346 A174283
KEYWORD
easy,nonn,changed
AUTHOR
Richard Choulet, Apr 10 2009
STATUS
approved