login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n)/2^(n^2) is the coefficient of x^n/n! in F(x)^(1/2^n) where F(x) is the e.g.f. of A159315.
2

%I #2 Mar 30 2012 18:37:17

%S 1,1,5,217,81761,240072001,5184101454785,817326468545940097,

%T 958739380619551186754561,8575669073854524479684954572801,

%U 596451091280508109580869521043477279745

%N a(n)/2^(n^2) is the coefficient of x^n/n! in F(x)^(1/2^n) where F(x) is the e.g.f. of A159315.

%C Equals main diagonal of array A159314; A159315 equals row 0 of array A159314.

%F E.g.f.: Sum_{n>=0} a(n)/2^(n^2)*x^n/n! = Sum_{n>=0} log(F(x/2^n))^n/n! where F(x) is the e.g.f. of A159315.

%F F(x)^(1/2^n) = R(n,x/2^n) where F(x)=R(0,x) and R(n,x) is the e.g.f. of row n of array A159314.

%e E.g.f.: 1 + 1/2*x + 5/2^4*x^2/2! + 217/2^9*x^3/3! + 81761/2^16*x^4/4! +...

%e The e.g.f. of A159315 is:

%e F(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 41*x^4/4! + 406*x^5/5! + 7127*x^6/6! +...

%o (PARI) {a(n)=local(A=vector(2*n+2, j, 1+j*x)); for(i=0, 2*n+1, for(j=0, 2*n, m=2*n+1-j; A[m]=exp(intformal((A[m+1]+x*O(x^n))^(2^(m-1)))))); n!*polcoeff(A[n+1], n, x)}

%Y Cf. A159314, A159315, A126444.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Apr 19 2009