login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerator of Hermite(n, 7/10).
1

%I #11 Sep 08 2022 08:45:43

%S 1,7,-1,-707,-4799,107807,1954399,-18661307,-814668799,1761841207,

%T 378933847999,1771616332493,-196012302071999,-2435055913999793,

%U 110362604948800799,2477077374441460693,-65432412090510374399,-2439688784186741175193

%N Numerator of Hermite(n, 7/10).

%H G. C. Greubel, <a href="/A159252/b159252.txt">Table of n, a(n) for n = 0..450</a>

%F From _G. C. Greubel_, Jun 28 2018: (Start)

%F a(n) = 5^n * Hermite(n, 7/10).

%F E.g.f.: exp(7*x-25*x^2).

%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/5)^(n-2*k)/(k!*(n-2*k)!)). (End)

%t Numerator[Table[HermiteH[n,7/10],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *)

%o (PARI) a(n)=numerator(polhermite(n,7/10)) \\ _Charles R Greathouse IV_, Jan 29 2016

%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(7/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 28 2018

%Y Cf. A159247.

%K sign,frac

%O 0,2

%A _N. J. A. Sloane_, Nov 12 2009